Difference between revisions of "Aufgaben:Exercise 3.6Z: Complex Exponential Function"
Line 11: | Line 11: | ||
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]. | *Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]. | ||
*Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55)]] an Beispielen verdeutlicht. | *Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55)]] an Beispielen verdeutlicht. | ||
− | *Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]] und | + | *Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]] und des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]]. |
*Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$ | *Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$ | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
Line 19: | Line 19: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie lautet die zu $ | + | {Wie lautet die zu $G(f)$ passende Zeitfunktion $g(t)$? Wie groß ist $g(t = 1 \, \mu \text {s})$? |
|type="{}"} | |type="{}"} | ||
− | $\text{Re}[g(t = 1 \mu s)]$ = { 0.707 3% } $\text{V}$ | + | $\text{Re}[g(t = 1 \, \mu \text {s})]$ = { 0.707 3% } $\text{V}$ |
− | $\text{Im}[g(t = 1 \mu s)]$ = { 0 | + | $\text{Im}[g(t = 1 \, \mu \text {s})]$ = { 0. } $\text{V}$ |
− | {Wie lautet die zu $ | + | {Wie lautet die zu $U(f)$ passende Zeitfunktion $u(t)$? Wie groß ist $u(t = 1 \, \mu \text {s})$? |
|type="{}"} | |type="{}"} | ||
− | $\text{Re}[u(t = 1 \mu s)]$ = { 0 | + | $\text{Re}[u(t = 1 \, \mu \text {s})]$ = { 0. } $\text{V}$ |
− | $\text{Im}[ | + | $\text{Im}[g(t = 1 \, \mu \text {s})]$ = { 0.707 3% } $\text{V}$ |
− | {Welche der Aussagen sind bezüglich des Signals $ | + | {Welche der Aussagen sind bezüglich des Signals $x(t)$ zutreffend? |
|type="[]"} | |type="[]"} | ||
− | + Das Signal lautet $ | + | + Das Signal lautet $x(t) = A \cdot {\rm e}^{{\rm j}2\pi f_0 t)}$. |
− | - In der komplexen Ebene dreht $ | + | - In der komplexen Ebene dreht $x(t)$ im Uhrzeigersinn. |
− | + $ | + | + In der komplexen Ebene dreht $x(t)$ entgegen dem Uhrzeigersinn. |
- Für eine Umdrehung wird eine Mikrosekunde benötigt. | - Für eine Umdrehung wird eine Mikrosekunde benötigt. | ||
Revision as of 10:48, 18 January 2017
In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion $\text{X(f)}$, die ein komplexes Zeitsignal $\text{x(t)}$ zur Folge hat.
In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55) an Beispielen verdeutlicht.
- Lösen Sie diese Aufgabe mit Hilfe des Zuordnungssatzes und des Verschiebungssatzes.
- Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
Bei $t = 1 \text{$\mu$s}$ ist der Signalwert gleich $A \cdot cos(\pi /4)$, also $0.707 \text{V}$ (Realteil) und $0$ (Imaginärteil).
2. Ausgehend von der Fourierkorrespondenz
- $$A \cdot {\rm \delta} ( f )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, A$$
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):
- $$U( f ) = \frac{A}{2} \cdot \delta ( {f - f_0 } ) - \frac{A}{2} \cdot \delta ( {f + f_0 } )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, u( t ) = \frac{A}{2}\left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$
Nach dem Satz von Euler kann hierfür auch geschrieben werden:
- $$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
Der Realteil dieses Signals ist stets $0$. Der Imaginärteil hat zur Zeit $t = 1 \text{$\mu$s}$ den Wert $0.707 \text{V}$.
3. Wegen $\text{X(f)} = \text{G(f)} + \text{U(f)}$ gilt auch:
- $$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:
- $$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$
Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \text{$\mu$s}$. Richtig sind also die vorgegebenen Alternativen 1 und 3.