Difference between revisions of "Aufgaben:Exercise 4.5Z: Simple Phase Modulator"
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Signaldarstellung/Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion }} right| Die Grafi…“) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID757__Sig_Z_4_5.png|right|]] | + | [[File:P_ID757__Sig_Z_4_5.png|right|Einfacher Phasenmodulator]] |
Die Grafik zeigt eine recht einfache Anordnung zur Approximation eines Phasenmodulators. Alle Signale seien hierbei dimensionslose Größen. | Die Grafik zeigt eine recht einfache Anordnung zur Approximation eines Phasenmodulators. Alle Signale seien hierbei dimensionslose Größen. | ||
− | Das sinusförmige Nachrichtensignal $q(t)$ der Frequenz $ | + | *Das sinusförmige Nachrichtensignal $q(t)$ der Frequenz $f_{\rm N} = 10 \ \text{kHz}$ wird mit dem Signal $m(t)$ multipliziert, das sich aus dem cosinusförmigen Trägersignal $z(t)$ durch Phasenverschiebung um $\phi = 90^\circ$ ergibt: |
:$$m(t) = {\cos} ( \omega_{\rm T} t + 90^\circ).$$ | :$$m(t) = {\cos} ( \omega_{\rm T} t + 90^\circ).$$ | ||
− | Anschließend wird das Signal $z(t)$ mit der Frequenz $ | + | Anschließend wird das Signal $z(t)$ mit der Frequenz $f_{\rm T} = 1 \ \text{MHz}$ noch direkt addiert. |
− | Zur Abkürzung werden in dieser Aufgabe auch die Differenzfrequenz $f_\Delta = | + | Zur Abkürzung werden in dieser Aufgabe auch die |
+ | *Differenzfrequenz $f_\Delta = f_{\rm T} – f_{\rm N} = 0.99 \text{MHz}$, | ||
+ | *die Summenfrequenz $f_\sum = f_{\rm T} + f_{\rm N} = 1.01 \text{MHz}$ sowie | ||
+ | *die beiden Kreisfrequenzen $\omega_\sum = 2\pi \cdot f_\Delta$ und $\omega_\sum = 2\pi \cdot f_\sum$ verwendet. | ||
− | + | ''Hinweise:'' | |
− | :$$\sin(\alpha) \cdot \cos (\beta)= | + | *Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]]. |
− | \beta) + | + | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. |
− | :$$\sin(\alpha) \cdot \sin (\beta)= | + | *Berücksichtigen Sie die trigonomischen Umformungen |
− | \beta) - | + | :$$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$ |
+ | :$$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2}} \cdot \cos(\alpha + \beta).$$ | ||
Revision as of 15:49, 20 January 2017
Die Grafik zeigt eine recht einfache Anordnung zur Approximation eines Phasenmodulators. Alle Signale seien hierbei dimensionslose Größen.
- Das sinusförmige Nachrichtensignal $q(t)$ der Frequenz $f_{\rm N} = 10 \ \text{kHz}$ wird mit dem Signal $m(t)$ multipliziert, das sich aus dem cosinusförmigen Trägersignal $z(t)$ durch Phasenverschiebung um $\phi = 90^\circ$ ergibt:
- $$m(t) = {\cos} ( \omega_{\rm T} t + 90^\circ).$$
Anschließend wird das Signal $z(t)$ mit der Frequenz $f_{\rm T} = 1 \ \text{MHz}$ noch direkt addiert.
Zur Abkürzung werden in dieser Aufgabe auch die
- Differenzfrequenz $f_\Delta = f_{\rm T} – f_{\rm N} = 0.99 \text{MHz}$,
- die Summenfrequenz $f_\sum = f_{\rm T} + f_{\rm N} = 1.01 \text{MHz}$ sowie
- die beiden Kreisfrequenzen $\omega_\sum = 2\pi \cdot f_\Delta$ und $\omega_\sum = 2\pi \cdot f_\sum$ verwendet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Berücksichtigen Sie die trigonomischen Umformungen
- $$\sin(\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \sin(\alpha - \beta) + {1}/{2} \cdot \sin(\alpha + \beta),$$
- $$\sin(\alpha) \cdot \sin (\beta)= {1}/{2} \cdot \cos(\alpha - \beta) - {1}/{2}} \cdot \cos(\alpha + \beta).$$
Fragebogen
Musterlösung
- $${s(t)} = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - \sin({ \omega_{\rm T}\hspace{0.05cm} t }) \cdot \sin({ \omega_{\rm N}\hspace{0.05cm} t })= \\ = \cos({ \omega_{\rm T}\hspace{0.05cm} t }) - 0.5 \cdot \cos(({ \omega_{\rm T}-\omega_{\rm N})\hspace{0.05cm} t }) + 0.5 \cdot \cos(({ \omega_{\rm T}+\omega_{\rm N})\hspace{0.05cm} t }).$$
2. Das Spektrum des analytischen Signals lautet:
- $$S_{\rm +}(f) = \delta (f - f_{\rm T}) - 0.5 \cdot \delta (f - f_{\rm \Delta})+ 0.5 \cdot \delta (f - f_{\rm \Sigma}) .$$
Durch Verschiebung um $f_T$ kommt man zum Spektrum des äquivalenten Tiefpass-Signals:
- $$S_{\rm TP}(f) = \delta (f ) - 0.5 \cdot \delta (f + f_{\rm N})+ 0.5 \cdot \delta (f - f_{\rm N}) .$$
Dies führt zu der Zeitfunktion
- $$s_{\rm TP}(t) = {\rm 1 } - 0.5 \cdot {\rm e}^{{-\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t }+ 0.5 \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm N} \hspace{0.05cm} t } = 1 + {\rm j} \cdot \sin(\omega_{\rm N} \hspace{0.05cm} t ).$$
Zum Zeitpunkt $t = 0$ ist $s_{TP}(t) = 1$, also reell. Somit gilt:
- $s_I(t = 0) = \text{Re}[s_{TP}(t = 0)] \underline{= 1}$,
- $s_Q(t = 0) = Im[s_{TP}(t = 0)] \underline{= 0}$.
3. Die Ortskurve ist eine vertikale Gerade $\Rightarrow$ Vorschlag 3 mit folgenden Werten:
- $$s_{\rm TP}(t = 0) = s_{\rm TP}(t = {\rm 50 \hspace{0.05cm} \mu s}) = ... = 1,$$
- $$s_{\rm TP}(t = {\rm 25 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t = {\rm 125 \hspace{0.05cm} \mu s}) = ... = 1 + {\rm j},$$
- $$s_{\rm TP}(t = {\rm 75 \hspace{0.05cm} \mu s}) = s_{\rm TP}(t = {\rm 175 \hspace{0.05cm} \mu s}) = ... = 1 - {\rm j}.$$
4. Der Betrag entspricht der Zeigerlänge. Diese schwankt zwischen $a_{max} \underline{= \text{„Wurzel aus 2”}}$ und $a_{min} \underline{= 1}$. Es gilt:
- $$a(t) = \sqrt{1 + \sin^2(\omega_{\rm N} \hspace{0.05cm} t )}.$$
Bei idealer Phasenmodulation müsste die Hüllkurve $a(t)$ dagegen konstant sein.
5. Der Realteil ist stets 1, der Imaginärteil gleich $\sin(\omega_N t)$. Daraus folgt die Phasenfunktion:
- $$\phi(t)= {\rm arctan} \hspace{0.1cm}{\left(\sin(\omega_{\rm N} \hspace{0.05cm} t )\right)}.$$
Der Maximalwert der Sinusfunktion ist 1. Daraus folgt $\phi_{max} = \arctan (1) \underline{= \pi /4\ \text{(entspricht $45 °$)}}$.