Difference between revisions of "Aufgaben:Exercise 1.8: Variable Edge Steepness"
Line 2: | Line 2: | ||
[[File:P_ID867__LZI_A_1_8.png|right|Trapeztiefpass und Cosinus–Rolloff–Tiefpass]] Zwei Tiefpässe mit variabler Flankensteilheit sollen miteinander verglichen werden. Für Frequenzen $|f| ≤ f_1$ gilt in beiden Fällen $H(f) = 1$. Dagegen werden alle Frequenzen $|f| ≥ f_2$ vollständig unterdrückt. | [[File:P_ID867__LZI_A_1_8.png|right|Trapeztiefpass und Cosinus–Rolloff–Tiefpass]] Zwei Tiefpässe mit variabler Flankensteilheit sollen miteinander verglichen werden. Für Frequenzen $|f| ≤ f_1$ gilt in beiden Fällen $H(f) = 1$. Dagegen werden alle Frequenzen $|f| ≥ f_2$ vollständig unterdrückt. | ||
+ | |||
Im mittleren Bereich $f_1 ≤ |f| ≤ f_2$ sind die Frequenzgänge durch die nachfolgenden Gleichungen festgelegt: | Im mittleren Bereich $f_1 ≤ |f| ≤ f_2$ sind die Frequenzgänge durch die nachfolgenden Gleichungen festgelegt: | ||
*Trapeztiefpass (TTP): | *Trapeztiefpass (TTP): | ||
Line 8: | Line 9: | ||
:$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$ | :$$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$ | ||
− | + | Alternative Systemparameter sind für beide Tiefpässe | |
− | Alternative Systemparameter sind für beide Tiefpässe die über das flächengleiche Rechteck definierte | + | *die über das flächengleiche Rechteck definierte äquivalente Bandbreite $Δf$, sowie |
− | |||
*der Rolloff–Faktor (im Frequenzbereich): | *der Rolloff–Faktor (im Frequenzbereich): | ||
:$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$ | :$$r=\frac{f_2 - f_1}{f_2 + f_1} .$$ | ||
+ | |||
In der gesamten Aufgabe gelte $Δf = 10 \ \rm kHz$ und $r = 0.2$. Die Impulsantworten lauten mit der äquivalenten Impulsdauer $Δt = 1/Δf = 0.1 \ \rm ms$: | In der gesamten Aufgabe gelte $Δf = 10 \ \rm kHz$ und $r = 0.2$. Die Impulsantworten lauten mit der äquivalenten Impulsdauer $Δt = 1/Δf = 0.1 \ \rm ms$: | ||
$$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot | $$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot |
Revision as of 11:52, 30 January 2017
Zwei Tiefpässe mit variabler Flankensteilheit sollen miteinander verglichen werden. Für Frequenzen $|f| ≤ f_1$ gilt in beiden Fällen $H(f) = 1$. Dagegen werden alle Frequenzen $|f| ≥ f_2$ vollständig unterdrückt.
Im mittleren Bereich $f_1 ≤ |f| ≤ f_2$ sind die Frequenzgänge durch die nachfolgenden Gleichungen festgelegt:
- Trapeztiefpass (TTP):
- $$H(f) = \frac{f_2 - |f|}{f_2 - f_1} ,$$
- Cosinus–Rolloff–Tiefpass (CRTP):
- $$H(f) = \cos^2 \left(\frac{|f|- f_1}{f_2 - f_1} \cdot\frac{\pi}{2} \right).$$
Alternative Systemparameter sind für beide Tiefpässe
- die über das flächengleiche Rechteck definierte äquivalente Bandbreite $Δf$, sowie
- der Rolloff–Faktor (im Frequenzbereich):
- $$r=\frac{f_2 - f_1}{f_2 + f_1} .$$
In der gesamten Aufgabe gelte $Δf = 10 \ \rm kHz$ und $r = 0.2$. Die Impulsantworten lauten mit der äquivalenten Impulsdauer $Δt = 1/Δf = 0.1 \ \rm ms$: $$h_{\rm TTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot {\rm si}(\pi \cdot r \cdot \frac{t}{\Delta t} ),$$ $$h_{\rm CRTP}(t) = \frac{1}{\Delta t} \cdot {\rm si}(\pi \cdot \frac{t}{\Delta t} )\cdot \frac {\cos(\pi \cdot r \cdot t / \Delta t )}{1 - (2 \cdot r \cdot t/\Delta t )^2}.$$
Hinweise:
- Die Aufgabe bezieht sich auf die beiden Theorieseiten Trapeztiefpass sowie Cosinus-Rolloff-Tiefpass.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Sie können Ihre Ergebnisse mit dem Interaktionsmodul Frequenzgänge im Frequenz- und Zeitbereich überprüfen:
Fragebogen
Musterlösung
- 1. Bei beiden Tiefpässen ist das Integral über H(f) gleich f1 + f2. Wegen H(f = 0) = 1 gilt somit auch der Lösungsvorschlag 2:
- $$\Delta f = f_1 + f_2.$$
- 2. Setzt man die unter a) gefundene Beziehung in die Definitionsgleichung des Rolloff–Faktors ein, so erhält man
- $${f_2 - f_1} = r \cdot \Delta f = {2\,\rm kHz}, \hspace{0.5cm} {f_2 + f_1} = {10\,\rm kHz}.$$
- Durch Addition bzw. Subtraktion beider Gleichungen ergeben sich die so genannten „Eckfrequenzen” zu f1 = 4 kHz und f2 = 6 kHz.
- 3. Die erste si–Funktion von hTTP(t) führt zu Nullstellen im Abstand Δt (siehe auch Gleichung auf der Angabenseite). Die zweite si–Funktion bewirkt Nullstellen bei Vielfachen von 5 · Δt. Da diese exakt mit den Nullstellen der ersten si–Funktion zusammenfallen, gibt es keine zusätzlichen Nullstellen.
- Der Sonderfall r = 0 entspricht dem idealen rechteckförmigen Tiefpass mit si–förmiger Impulsantwort. Diese klingt extrem langsam ab. Dagegen fällt die si2–förmige Impulsantwort des Dreiecktiefpasses (Sonderfall für r = 1) asymptotisch mit 1/t2 und damit schneller als mit r = 0.2.
- Richtig sind somit die Lösungsvorschläge 1 und 4.
- 4. hCRTP(t) weist aufgrund der si–Funktion ebenfalls Nullstellen im Abstand Δt auf. Die Cosinusfunktion hat Nullstellen zu folgenden Zeitpunkten:
- $${\cos(\pi \cdot r \cdot {t}/{ \Delta t} )} = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}r \cdot {t}/{ \Delta t} = \pm 0.5, \pm 1.5, \pm 2.5, ... $$
- $$\Rightarrow \hspace{0.3cm} {t}/{ \Delta t} = \pm 2.5, \pm 7.5, \pm 12.5, ... $$
- Die Nullstelle des Zählers bei t/Δt = 2.5 wird allerdings durch den ebenfalls verschwindenden Nenner zunichte gemacht. Die weiteren Nullstellen bei 7.5, 12.5, usw. bleiben dagegen bestehen.
- Auch hier führt r = 0 zum Rechtecktiefpass und damit zur si–förmigen Impulsantwort. Dagegen klingt die Impulsantwort des Cosinus–Quadrat–Tiefpasses (Sonderfall für r = 1) extrem schnell ab. Dieser wird in der Zusatzaufgabe Z1.8 eingehend untersucht.
- Richtig sind hier die Vorschläge 1, 2 und 4.