Difference between revisions of "Aufgaben:Exercise 2.3Z: Asymmetrical Characteristic Operation"
Line 59: | Line 59: | ||
{Berechnen Sie den Maximal– und den Minimalwert des Signals $y(t)$. | {Berechnen Sie den Maximal– und den Minimalwert des Signals $y(t)$. | ||
|type="{}"} | |type="{}"} | ||
− | $y_\text{max} \ =$ | + | $y_\text{max} \ =$ { 0.386 3% } |
− | $y_\text{min} \ =$ | + | $y_\text{min} \ =$ { -0.450--0.446 } |
Line 68: | Line 68: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Unter Berücksichtigung der kubischen Näherung $g_3(x)$ erhält man vor dem Hochpass: | |
− | + | $$y_{C}(t) = g_3\left[x_{\rm C}(t)\right] = \left[ C + A \cdot \cos(\omega_0 | |
− | t)\right] - | + | t)\right] - {1}/{6} \cdot \left[ C + A \cdot \cos(\omega_0 |
− | t)\right]^3 | + | t)\right]^3 $$ |
+ | $$\Rightarrow \; y_{C}(t) = | ||
C + A \cdot \cos(\omega_0 | C + A \cdot \cos(\omega_0 | ||
− | t) - | + | t) - {1}/{6} \cdot [ C^3 + 3 \cdot C^2 \cdot A \cdot \cos(\omega_0 |
− | t) + | + | t) + \hspace{0.01cm}+ \hspace{0.09cm}3 \cdot C \cdot A^2 \cdot \cos^2(\omega_0 |
t) + A^3 \cdot \cos^3(\omega_0 t)].$$ | t) + A^3 \cdot \cos^3(\omega_0 t)].$$ | ||
− | + | Das Signal $y_{C}(t)$ beinhaltet eine Gleichsignalkomponente $C- C^3/6$, die jedoch aufgrund des Hochpasses im Signal $y(t)$ nicht mehr enthalten ist: $\underline A_0 = 0</u>$. | |
− | + | '''(2)''' Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit $A= C0 = 0.5$: | |
− | + | $$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A - {1}/{6} cdot {3}/{4}\cdot | |
− | A^3 = | + | A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64} |
\hspace{0.15cm}\underline{ \approx 0.422},$$ | \hspace{0.15cm}\underline{ \approx 0.422},$$ | ||
− | + | $$A_2 = - \frac{1}{6}\cdot 3 \cdot \frac{1}{2}\cdot | |
C \cdot A^2 = - \frac{1}{32} \hspace{0.15cm}\underline{\approx -0.031},$$ | C \cdot A^2 = - \frac{1}{32} \hspace{0.15cm}\underline{\approx -0.031},$$ | ||
− | + | $$A_3 = - \frac{1}{6}\cdot \frac{1}{4}\cdot | |
A^3 = - \frac{1}{192} \hspace{0.15cm}\underline{\approx -0.005}.$$ | A^3 = - \frac{1}{192} \hspace{0.15cm}\underline{\approx -0.005}.$$ | ||
:Terme höherer Ordnung kommen nicht vor. Somit ist auch <i>A</i><sub>4</sub> = 0. | :Terme höherer Ordnung kommen nicht vor. Somit ist auch <i>A</i><sub>4</sub> = 0. | ||
− | + | '''(3)''' Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu <i>K</i><sub>2</sub> = 2/27 ≈ 7.41% und <i>K</i><sub>3</sub> = 1/81 ≈ 1.23%. Damit ist der Gesamtklirrfaktor | |
:$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$ | :$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$ | ||
− | + | '''(4)''' Der Maximalwert tritt zum Zeitpunkt <i>t</i> = 0 und bei Vielfachen von <i>T</i> auf: | |
:$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{= | :$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{= | ||
0.386}.$$ | 0.386}.$$ |
Revision as of 12:06, 2 February 2017
Am Eingang eines Systems $S$ liegt das Cosinussignal $$x(t) = A \cdot \cos(\omega_0 t)$$
an, wobei für die Amplitude stets $A = 0.5$ gelten soll. Das System C besteht
- aus der Addition eines Gleichanteils C, einer Nichtlinearität mit der Kennlinie
- $$g(x) = \sin(x) \hspace{0.05cm} \approx x \hspace{0.05cm} - \hspace{-0.1cm}{x^3}\hspace{-0.1cm}/{6} = g_3(x)$$
- sowie einem idealen Hochpass, der alle Frequenzen bis auf ein Gleichsignal (f = 0) unverfälscht passieren lässt.
Das Ausgangssignal des Gesamtsystems kann allgemein in folgender Form dargestellt werden: $$y(t) = A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) + A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}...$$
Die sinusförmige Kennlinie $g(x)$ soll in der gesamten Aufgabe entsprechend der obigen Gleichung durch die kubische Näherung $g_3(x)$ approximiert werden. Für $C = 0.$ ergäbe sich somit die exakt gleiche Konstellation wie in Aufgabe 2.3, in deren Unterpunkt (2) der Klirrfaktor berechnet wurde:
- $K = K_{g3} \approx 1.08 \%$ für $A = 0.5$,
- $K = K_{g3} \approx 4.76 \%$ für $A = 1.0$.
Unter Berücksichtigung der Konstanten $A = C = 0.5$ gilt für das Eingangssignal der Nichtlinearität:
- $$x_C(t) = C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
Die Kennlinie wird also unsymmetrisch betrieben mit Werten zwischen $0$ und $1$. In obiger Grafik sind zusätzlich die Signale $x_{C}(t)$ und $y_{C}(t)$ direkt vor und nach der Kennlinie $g(x)$ eingezeichnet.
Hinweise:
- Die Aufgabe bezieht sich auf das Kapitel Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]].
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
$$\cos^2(\alpha) = {1}/{2} + {1}/{2} :\cdot \cos(2\alpha)\hspace{0.05cm}, \hspace{0.3cm} \cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}.$$
Fragebogen
Musterlösung
Das Signal $y_{C}(t)$ beinhaltet eine Gleichsignalkomponente $C- C^3/6$, die jedoch aufgrund des Hochpasses im Signal $y(t)$ nicht mehr enthalten ist: $\underline A_0 = 0</u>$.
(2) Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit $A= C0 = 0.5$: $$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A - {1}/{6} cdot {3}/{4}\cdot A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64} \hspace{0.15cm}\underline{ \approx 0.422},$$ $$A_2 = - \frac{1}{6}\cdot 3 \cdot \frac{1}{2}\cdot C \cdot A^2 = - \frac{1}{32} \hspace{0.15cm}\underline{\approx -0.031},$$ $$A_3 = - \frac{1}{6}\cdot \frac{1}{4}\cdot A^3 = - \frac{1}{192} \hspace{0.15cm}\underline{\approx -0.005}.$$
- Terme höherer Ordnung kommen nicht vor. Somit ist auch A4 = 0.
(3) Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu K2 = 2/27 ≈ 7.41% und K3 = 1/81 ≈ 1.23%. Damit ist der Gesamtklirrfaktor
- $$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
(4) Der Maximalwert tritt zum Zeitpunkt t = 0 und bei Vielfachen von T auf:
- $$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{= 0.386}.$$
- Die Minimalwerte liegen genau in der Mitte zwischen den Maxima und es gilt:
- $$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ = -0.448}.$$
- Das Signal y(t) ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal um 0.448 nach unten verschoben. Dieser Signalwert ergibt sich aus folgender Gleichung mit A = C = 1/2:
- $$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} = \frac{1}{2} - \frac{1}{32}- \frac{1}{48} = 0.448.$$