Difference between revisions of "Aufgaben:Exercise 1.1Z: Sum of Two Ternary Signals"
Line 6: | Line 6: | ||
*Eine einfache Schaltung bildet nun das Summensignal S=X+Y. | *Eine einfache Schaltung bildet nun das Summensignal S=X+Y. | ||
− | Bei der Signalquelle X treten die Werte –1, 0 und +1 mit gleicher Wahrscheinlichkeit auf. | + | *Bei der Signalquelle X treten die Werte –1, 0 und +1 mit gleicher Wahrscheinlichkeit auf. |
*Bei der Quelle ist Y der Signalwert 0 doppelt so wahrscheinlich wie die beiden anderen Werte –1 bzw. +1. | *Bei der Quelle ist Y der Signalwert 0 doppelt so wahrscheinlich wie die beiden anderen Werte –1 bzw. +1. | ||
Line 47: | Line 47: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Da die Wahrscheinlichkeiten von \pm 1 gleich sind und ${\rm Pr}(Y = 0) = 2 \cdot {\rm Pr}(Y = 1)$ gilt, erhält man: | |
− | Pr(Y = 1) + Pr(Y = 0) + Pr(Y = -1) = 1 | + | $${\rm Pr}(Y = 1) + {\rm Pr}(Y = 0) + {\rm Pr}(Y = -1) = 1/2 \cdot {\rm Pr}(Y = 0) + {\rm Pr}(Y = 0) + 1/2\cdot {\rm Pr}(Y = 0) = 1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(Y = 0)\;\underline { = 1/2}. $$ |
− | $ \ | + | '''(2)''' S kann insgesamt $\underline {I =5} Werte annehmen, nämlich 0, \pm 1 und \pm 2$. |
− | + | [[File:P_ID192__Sto_Z1_1_c.png|right|400px|Summe und Differenz ternärer Zufallsgrößen]] | |
− | : | + | '''(3)''' Da Y nicht gleichverteilt ist, kann man hier (eigentlich)die „Klassische Definition der Wahrscheinlichkeit” nicht anwenden. |
− | + | Teilt man Y jedoch gemäß der Grafik in vier Bereiche auf, wobei man zwei der Bereiche dem Ereignis Y = 0 zuordnet, so kann man die klassische Definition dennoch anwenden. Man erhält dann: | |
− | Teilt man Y jedoch gemäß | ||
− | $Pr(S = 0) = | + | $${\rm Pr}(S = 0) = {4}/{12} = {1}/{3},$$ |
+ | $${\rm Pr}(S = +1) = {\rm Pr}(S = -1) ={3}/{12} = {1}/{4},$$ | ||
+ | {\rm Pr}(S = +2) = {\rm Pr}(S = -2) ={1}/{12} | ||
+ | \Rightarrow \hspace{0.3cm}{\rm Pr}(S = S_{\rm max}) = {\rm Pr}(S = +2) =1/12 \;\underline {= 0.0833}. | ||
− | + | '''(4)''' Aus der Grafik ist auch ersichtlich, dass das Differenzsignal D und das Summensignal S die gleichen Werte mit gleichen Wahrscheinlichkeiten annehmen. Dies war zu erwarten, da ${\rm Pr}(Y = +1) ={\rm Pr}(Y = -1)$ vorgegeben ist ⇒ <u>Lösungsvorschlag 1</u>. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 15:30, 20 February 2017
Gegeben seien zwei dreistufige Nachrichtenquellen X und Y, deren Ausgangssignale jeweils nur die Werte –1, 0 und +1 annehmen können. Die Signalquellen sind statistisch voneinander unabhängig.
- Eine einfache Schaltung bildet nun das Summensignal S = X + Y.
- Bei der Signalquelle X treten die Werte –1, 0 und +1 mit gleicher Wahrscheinlichkeit auf.
- Bei der Quelle ist Y der Signalwert 0 doppelt so wahrscheinlich wie die beiden anderen Werte –1 bzw. +1.
Hinweise:
- Die Aufgabe gehört zum Kapitel Einige grundlegende Definitionen der Wahrscheinlichkeitsrechnung.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Lösen Sie die Teilaufgaben (3) und (4) nach der klassischen Definition. Berücksichtigen Sie trotzdem die unterschiedlichen Auftrittshäufigkeiten des Signals Y.
- Der Inhalt dieses Abschnitts ist in einem Lernvideo zusammengefasst:
Fragebogen
Musterlösung
{\rm Pr}(Y = 1) + {\rm Pr}(Y = 0) + {\rm Pr}(Y = -1) = 1/2 \cdot {\rm Pr}(Y = 0) + {\rm Pr}(Y = 0) + 1/2\cdot {\rm Pr}(Y = 0) = 1\hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(Y = 0)\;\underline { = 1/2}.
(2) S kann insgesamt \underline {I =5} Werte annehmen, nämlich 0, \pm 1 und \pm 2.
(3) Da Y nicht gleichverteilt ist, kann man hier (eigentlich)die „Klassische Definition der Wahrscheinlichkeit” nicht anwenden. Teilt man Y jedoch gemäß der Grafik in vier Bereiche auf, wobei man zwei der Bereiche dem Ereignis Y = 0 zuordnet, so kann man die klassische Definition dennoch anwenden. Man erhält dann:
{\rm Pr}(S = 0) = {4}/{12} = {1}/{3}, {\rm Pr}(S = +1) = {\rm Pr}(S = -1) ={3}/{12} = {1}/{4}, {\rm Pr}(S = +2) = {\rm Pr}(S = -2) ={1}/{12} \Rightarrow \hspace{0.3cm}{\rm Pr}(S = S_{\rm max}) = {\rm Pr}(S = +2) =1/12 \;\underline {= 0.0833}.
(4) Aus der Grafik ist auch ersichtlich, dass das Differenzsignal D und das Summensignal S die gleichen Werte mit gleichen Wahrscheinlichkeiten annehmen. Dies war zu erwarten, da {\rm Pr}(Y = +1) ={\rm Pr}(Y = -1) vorgegeben ist ⇒ Lösungsvorschlag 1.