Difference between revisions of "Aufgaben:Exercise 1.4: 2S/3E Channel Model"
Line 44: | Line 44: | ||
{Wie groß ist die Wahrscheinlichkeit, dass das Symbol $\rm L$ gesendet wurde, wenn sich der Empfänger für das Symbol $\rm L$ entschieden hat? | {Wie groß ist die Wahrscheinlichkeit, dass das Symbol $\rm L$ gesendet wurde, wenn sich der Empfänger für das Symbol $\rm L$ entschieden hat? | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}( | + | ${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm L} ) \ = $ { 1 3% } |
{Wie groß ist die Wahrscheinlichkeit, dass das Symbol $\rm L$ gesendet wurde, wenn der Empfänger keine Entscheidung trifft? | {Wie groß ist die Wahrscheinlichkeit, dass das Symbol $\rm L$ gesendet wurde, wenn der Empfänger keine Entscheidung trifft? | ||
|type="{}"} | |type="{}"} | ||
− | ${\rm Pr}( | + | ${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm K} ) \ =$ { 0.4614 3% } |
Line 57: | Line 57: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Nur wenn das Symbol $\rm L$ gesendet wurde, kann sich der Empfänger beim gegebenen Kanal für das Symbol $\rm L$ entscheiden. Die Wahrscheinlichkeit für ein empfangenes $\rm L$ ist allerdings um den Faktor $0.7$ kleiner als für ein gesendetes. Daraus folgt: | |
− | + | $${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$ | |
− | + | ||
− | + | '''(2)''' Zum Ereignis $E_{\rm H}$ kommt man sowohl von $S_{\rm H}$ als auch von $S_{\rm L}$ aus. Deshalb gilt: | |
− | + | $${\rm Pr} (E_{\rm H}) = \rm Pr (S_{\rm H}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { = \rm 0.66}.$$ | |
− | + | ||
− | + | '''(3)''' Die Ereignisse $E_{\rm H}$, $E_{\rm L}$ und $E_{\rm K}$ bilden zusammen ein vollständiges System. Daraus folgt: | |
− | + | $${\rm Pr} (E_{\rm K}) =\rm 1 - {\rm Pr} (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$ | |
− | + | ||
− | + | '''(4)''' Eine falsche Entscheidung kann man mengentheoretisch wie folgt charakterisieren: | |
− | + | $$\rm Pr (falsche\hspace{0.1cm}Entscheidung) = Pr (S_{\rm L} \cap E_{\rm H} \cup S_{\rm H} \cap E_{\rm L}) = \rm 0.3 \cdot 0.1 + 0.7\cdot 0 \hspace{0.15cm}\underline {= \rm 0.03}.$$ | |
− | + | ||
+ | '''(5)''' Wenn das Symbol $\rm L$ empfangen wurde, kann nur $\rm L$ gesendet worden sein. Daraus folgt: | ||
+ | $${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$ | ||
+ | |||
+ | '''(6)''' Zur Lösung dieser Aufgabe eignet sich zum Beispiel der Satz von Bayes: | ||
+ | $${\rm Pr} (S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm} E_{\rm K}) =\frac{ {\rm Pr} ( E_{\rm K} \hspace{0.05cm}|\hspace{0.05cm} S_{\rm L}) \cdot {\rm Pr} (S_{\rm L})}{{\rm Pr} (E_{\rm K})} =\frac{ \rm 0.2 \cdot 0.3}{\rm 0.13} = \frac{\rm 6}{\rm 13}\hspace{0.15cm}\underline { \approx \rm 0.462}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 12:39, 22 February 2017
Ein Sender gibt die binären Symbole $\rm L$ (Ereignis $S_{\rm L}$) und $H$ (Ereignis $S_{\rm H}$) ab.
- Bei guten Bedingungen entscheidet sich der Digitalempfänger ebenfalls nur für die Binärsymbole $\rm L$ (Ereignis $E_{\rm L}$) oder $H$ (Ereignis $E_{\rm H}$) .
- Kann der Empfänger allerdings vermuten, dass bei der Übertragung ein Fehler aufgetreten ist, so trifft er keine Entscheidung (Ereignis $E_{\rm K}$; $K$ steht dabei für „Keine Entscheidung”).
Die Grafik zeigt ein einfaches Kanalmodell in Form von Übergangswahrscheinlichkeiten. Es ist zu erkennen, dass ein gesendetes $\rm L$ durchaus als Symbol $\rm H$ empfangen werden kann. Dagegen ist der Übergang von $\rm H$ nach $\rm L$ nicht möglich.
Die Symbolauftrittswahrscheinlichkeiten am Sender seien ${\rm Pr}(S_{\rm L}) = 0.3$ und ${\rm Pr}(S_{\rm H}) = 0.7$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
Fragebogen
Musterlösung
(2) Zum Ereignis $E_{\rm H}$ kommt man sowohl von $S_{\rm H}$ als auch von $S_{\rm L}$ aus. Deshalb gilt: $${\rm Pr} (E_{\rm H}) = \rm Pr (S_{\rm H}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { = \rm 0.66}.$$
(3) Die Ereignisse $E_{\rm H}$, $E_{\rm L}$ und $E_{\rm K}$ bilden zusammen ein vollständiges System. Daraus folgt: $${\rm Pr} (E_{\rm K}) =\rm 1 - {\rm Pr} (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$
(4) Eine falsche Entscheidung kann man mengentheoretisch wie folgt charakterisieren: $$\rm Pr (falsche\hspace{0.1cm}Entscheidung) = Pr (S_{\rm L} \cap E_{\rm H} \cup S_{\rm H} \cap E_{\rm L}) = \rm 0.3 \cdot 0.1 + 0.7\cdot 0 \hspace{0.15cm}\underline {= \rm 0.03}.$$
(5) Wenn das Symbol $\rm L$ empfangen wurde, kann nur $\rm L$ gesendet worden sein. Daraus folgt: $${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$
(6) Zur Lösung dieser Aufgabe eignet sich zum Beispiel der Satz von Bayes: $${\rm Pr} (S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm} E_{\rm K}) =\frac{ {\rm Pr} ( E_{\rm K} \hspace{0.05cm}|\hspace{0.05cm} S_{\rm L}) \cdot {\rm Pr} (S_{\rm L})}{{\rm Pr} (E_{\rm K})} =\frac{ \rm 0.2 \cdot 0.3}{\rm 0.13} = \frac{\rm 6}{\rm 13}\hspace{0.15cm}\underline { \approx \rm 0.462}.$$