Difference between revisions of "Aufgaben:Exercise 3.9Z: Sine Transformation"
Line 62: | Line 62: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Richtig sind<u>der zweite und der dritte Lösungsvorschlag</u>: | |
+ | *Aufgrund des Wertebereichs von $x$ und der gegebenen Kennlinie kann $y$ keine Werte kleiner als $0$ bzw. größer als $1$ annehmen. | ||
+ | *Der Wert $y = 0$ kann allerdings ebenfalls nicht auftreten, da weder $x = 0$ noch $x = 2$ möglich sind. | ||
+ | *Mit diesen Eigenschaften ergibt sich sicher $m_y < 1$, also ein kleinerer Wert als $m_x = 1$ (siehe Angabe). | ||
− | |||
− | |||
− | + | '''(2)''' Zur Lösung dieser Aufgabe könnte man beispielsweise zunächst die WDF $f_y(y)$ bestimmen und daraus in gewohnter Weise $m_y$ berechnen. Zum gleichen Ergebnis führt der direkte Weg: | |
− | + | $$m_y={\rm E}[y]={\rm E}[g(x)]=\int_{-\infty}^{+\infty}g(x)\cdot f_x(x)\,{\rm d}x.$$ | |
− | + | Mit den aktuellen Funktionen $g(x)$ und $f_x(x)$ erhält man: | |
− | + | $$m_y=\int_{\rm 0}^{\rm 2}\hspace{-0.1cm}\sin^{\rm 3}({\pi}/{ 2}\cdot x)\,{\rm d}x=\frac{\rm 2}{\rm 3\cdot \pi}\cdot \cos^{\rm 3}({\pi}/{ 2}\cdot x)-\frac{\rm 2}{\rm \pi} \cdot \cos({3 \rm \pi}/{\rm 2}\cdot x)\Big|_{\rm 0}^{\rm 2}=\frac{\rm 8}{\rm 3\cdot \pi} \hspace{0.15cm}\underline{=\rm 0.849}.$$ | |
− | :Dies führt zum Ergebnis: | + | |
− | + | '''(3)''' In Analogie zu Punkt (2) gilt: | |
+ | $$m_{2 y}={\rm E}[y^{\rm 2}]={\rm E}[g^{\rm 2}( x)]=\int_{-\infty}^{+\infty}\hspace{-0.35cm}g^{2}( x)\cdot f_x(x)\,{\rm d}x.$$ | ||
+ | |||
+ | Dies führt zum Ergebnis: | ||
+ | $$ m_{ 2 y}=\int_{\rm 0}^{\rm 2}\hspace{-0.15cm}\sin^{\rm 4}({\rm \pi}/{\rm 2}\cdot x)\,{\rm d} x= \frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \sin(\rm \pi\cdot{\it x})+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \sin(\rm 2 \pi\cdot {\it x})\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm | ||
0.75}.$$ | 0.75}.$$ | ||
− | + | Mit dem Ergebnis aus (2) folgt somit für die Streuung: | |
− | + | $$ \sigma_{y}=\sqrt{\frac{\rm 3}{\rm 4}-\Big(\frac{\rm 8}{\rm 3\cdot\pi}\Big)^{\rm 2}} \hspace{0.15cm}\underline{\approx \rm 0.172}.$$ | |
+ | |||
− | + | '''(4)''' Aufgrund der Symmetrie von WDF $f_x(x)$ und Kennlinie $y =g(x)$ um $x = 1$ liefern die beiden Bereiche $0 \le x \le 1$ und $1 \le x \le 2$ jeweils den gleichen Beitrag für $f_y(y)$. Im ersten Bereich ist die Ableitung der Kennlinie positiv, | |
[[File:P_ID138__Sto_Z_3_9_e_neu.png|right|]] | [[File:P_ID138__Sto_Z_3_9_e_neu.png|right|]] | ||
− | + | $$g'(x)={\rm \pi}/{\rm 2}\cdot \cos({\rm \pi}/{\rm 2}\cdot x),$$ | |
+ | |||
+ | und die Umkehrfunktion lautet: | ||
+ | $$ x=h(y)={\rm 2}/{\rm \pi}\cdot \arcsin( y).$$ | ||
− | + | Unter Berücksichtigung des zweiten Beitrags durch den Faktor $2$ erhält man für die gesuchte WDF im Bereich $0 \le y \le 1$ (außerhalb ist $f_y(y) \equiv 0$): | |
− | + | $$f_y(y)=\rm 2\cdot\frac{sin^{\rm 2}({\rm \pi}/{\rm 2}\cdot\it x)}{{\rm \pi}/{\rm 2}\cdot cos({\rm \pi}/{\rm 2}\cdot\it x)}\Big|_{\, \it x={\rm 2}/{\rm \pi}\cdot \rm arcsin(\it y)}.$$ | |
− | + | Dies führt zum Zwischenergebnis: | |
− | + | $$f_y(y)=\frac{\rm 4}{\rm \pi}\cdot \frac{\rm sin^{\rm 2}(\rm arcsin(\it y))}{\sqrt{\rm 1-sin^{\rm 2}(\rm arcsin(\it y))}}.$$ | |
− | + | Wegen sin(arcsin(<i>y</i>)) = <i>y</i> erhält man schließlich: | |
− | + | $$f_y(y)=\frac{\rm 4}{\rm \pi}\cdot \frac{\it y^{\rm 2}}{\sqrt{\rm 1-\it y^{\rm 2}}}.$$ | |
− | + | An der Stelle <i>y</i> = 0.6 erhält man den Wert <u>0.573</u>. Rechts ist die WDF <i>f<sub>y</sub></i>(<i>y</i>) grafisch dargestellt. | |
− | |||
− | |||
− | + | '''(5)''' Die WDF ist an der Stelle <i>y</i> = 1 unendlich groß. Dies hängt damit zusammen, dass an dieser Stelle die Ableitung <i>g</i>'(<i>x</i>) der Kennlinie horizontal verläuft. Da aber <i>y</i> eine kontinuierliche Zufallsgröße ist, gilt trotzdem Pr(<i>y</i> = 1) = 0. Das bedeutet: Eine Unendlichkeitsstelle in der WDF ist nicht identisch mit einer Diracfunktion. | |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 18:04, 14 March 2017
Wir betrachten in dieser Aufgabe eine Zufallsgröße $x$ mit $\sin^2$–förmiger WDF im Bereich zwischen $x= 0$ und $x= 2$ (außerhalb ist die WDF identisch $0$): $$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm f\ddot{u}r\hspace{0.15cm}{\rm 0\le \it x \le \rm 2} .$$
Der Mittelwert und die Streuung dieser Zufallsgröße $x$ wurden bereits in der Aufgabe 3.3 ermittelt: $$m_x = 1,\hspace{0.2cm}\sigma_x = 0.361.$$
Eine weitere Zufallsgröße $y$ erhält man durch Transformation mittels der nichtlinearen Kennlinie $$y= g(x) =\sin({\rm\pi}{\rm 2}\cdot x).$$
Die Abbildung zeigt jeweils im Bereich $0 \le x \le 2$:
- oben die WDF fx(x),
- unten die nichtlineare Kennlinie $y = g(x)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Exponentialverteilte Zufallsgröße.
- Besonderer Bezug genommen wird auf die Seite Transformation von Zufallsgrößen und auf das Kapitel Erwartungswerte und Momente.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Vorgegeben sind die beiden unbestimmten Integrale:
- $$\int \sin^{\rm 3}( ax)\,{\rm d}x = \frac{\rm 1}{ 3 a} \cdot \cos^{\rm 3}( ax)-\frac{\rm 1}{ a}\cdot \cos(ax),$$
- $$\int \sin^{\rm 4}(ax)\,{\rm d}x =\frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 4 a} \cdot \sin(2 ax)+\frac{\rm 1}{32 a}\cdot \sin(4 ax).$$
Fragebogen
Musterlösung
- Aufgrund des Wertebereichs von $x$ und der gegebenen Kennlinie kann $y$ keine Werte kleiner als $0$ bzw. größer als $1$ annehmen.
- Der Wert $y = 0$ kann allerdings ebenfalls nicht auftreten, da weder $x = 0$ noch $x = 2$ möglich sind.
- Mit diesen Eigenschaften ergibt sich sicher $m_y < 1$, also ein kleinerer Wert als $m_x = 1$ (siehe Angabe).
(2) Zur Lösung dieser Aufgabe könnte man beispielsweise zunächst die WDF $f_y(y)$ bestimmen und daraus in gewohnter Weise $m_y$ berechnen. Zum gleichen Ergebnis führt der direkte Weg:
$$m_y={\rm E}[y]={\rm E}[g(x)]=\int_{-\infty}^{+\infty}g(x)\cdot f_x(x)\,{\rm d}x.$$
Mit den aktuellen Funktionen $g(x)$ und $f_x(x)$ erhält man: $$m_y=\int_{\rm 0}^{\rm 2}\hspace{-0.1cm}\sin^{\rm 3}({\pi}/{ 2}\cdot x)\,{\rm d}x=\frac{\rm 2}{\rm 3\cdot \pi}\cdot \cos^{\rm 3}({\pi}/{ 2}\cdot x)-\frac{\rm 2}{\rm \pi} \cdot \cos({3 \rm \pi}/{\rm 2}\cdot x)\Big|_{\rm 0}^{\rm 2}=\frac{\rm 8}{\rm 3\cdot \pi} \hspace{0.15cm}\underline{=\rm 0.849}.$$
(3) In Analogie zu Punkt (2) gilt:
$$m_{2 y}={\rm E}[y^{\rm 2}]={\rm E}[g^{\rm 2}( x)]=\int_{-\infty}^{+\infty}\hspace{-0.35cm}g^{2}( x)\cdot f_x(x)\,{\rm d}x.$$
Dies führt zum Ergebnis: $$ m_{ 2 y}=\int_{\rm 0}^{\rm 2}\hspace{-0.15cm}\sin^{\rm 4}({\rm \pi}/{\rm 2}\cdot x)\,{\rm d} x= \frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \sin(\rm \pi\cdot{\it x})+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \sin(\rm 2 \pi\cdot {\it x})\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm 0.75}.$$
Mit dem Ergebnis aus (2) folgt somit für die Streuung: $$ \sigma_{y}=\sqrt{\frac{\rm 3}{\rm 4}-\Big(\frac{\rm 8}{\rm 3\cdot\pi}\Big)^{\rm 2}} \hspace{0.15cm}\underline{\approx \rm 0.172}.$$
(4) Aufgrund der Symmetrie von WDF $f_x(x)$ und Kennlinie $y =g(x)$ um $x = 1$ liefern die beiden Bereiche $0 \le x \le 1$ und $1 \le x \le 2$ jeweils den gleichen Beitrag für $f_y(y)$. Im ersten Bereich ist die Ableitung der Kennlinie positiv,
$$g'(x)={\rm \pi}/{\rm 2}\cdot \cos({\rm \pi}/{\rm 2}\cdot x),$$
und die Umkehrfunktion lautet: $$ x=h(y)={\rm 2}/{\rm \pi}\cdot \arcsin( y).$$
Unter Berücksichtigung des zweiten Beitrags durch den Faktor $2$ erhält man für die gesuchte WDF im Bereich $0 \le y \le 1$ (außerhalb ist $f_y(y) \equiv 0$): $$f_y(y)=\rm 2\cdot\frac{sin^{\rm 2}({\rm \pi}/{\rm 2}\cdot\it x)}{{\rm \pi}/{\rm 2}\cdot cos({\rm \pi}/{\rm 2}\cdot\it x)}\Big|_{\, \it x={\rm 2}/{\rm \pi}\cdot \rm arcsin(\it y)}.$$
Dies führt zum Zwischenergebnis: $$f_y(y)=\frac{\rm 4}{\rm \pi}\cdot \frac{\rm sin^{\rm 2}(\rm arcsin(\it y))}{\sqrt{\rm 1-sin^{\rm 2}(\rm arcsin(\it y))}}.$$
Wegen sin(arcsin(y)) = y erhält man schließlich: $$f_y(y)=\frac{\rm 4}{\rm \pi}\cdot \frac{\it y^{\rm 2}}{\sqrt{\rm 1-\it y^{\rm 2}}}.$$
An der Stelle y = 0.6 erhält man den Wert 0.573. Rechts ist die WDF fy(y) grafisch dargestellt.
(5) Die WDF ist an der Stelle y = 1 unendlich groß. Dies hängt damit zusammen, dass an dieser Stelle die Ableitung g'(x) der Kennlinie horizontal verläuft. Da aber y eine kontinuierliche Zufallsgröße ist, gilt trotzdem Pr(y = 1) = 0. Das bedeutet: Eine Unendlichkeitsstelle in der WDF ist nicht identisch mit einer Diracfunktion.