Difference between revisions of "Aufgaben:Exercise 3.10Z: Rayleigh? Or Rice?"

From LNTwww
Line 58: Line 58:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Aufgrund der gegebenen WDF liegt keine Riceverteilung, sondern eine Rayleighverteilung vor. Diese ist um den Mittelwert <i>m<sub>x</sub></i> unsymmetrisch, so dass <i>&mu;</i><sub>3</sub> &ne; 0 ist.  
+
'''(1)'''&nbsp; Richtig ist <u>allein der zweite Lösungsvorschlag</u>.
 +
*Aufgrund der gegebenen WDF liegt keine Riceverteilung, sondern eine Rayleighverteilung vor.  
 +
*Diese ist um den Mittelwert $m_x$ unsymmetrisch, so dass $\mu_3 \ne 0$ ist.
 +
*Nur bei einer gau&szlig;verteilten Zufallsgr&ouml;&szlig;e gilt f&uuml;r die Kurtosis $K = 3$.
 +
*Bei der Rayleighverteilung ergibt sich aufgrund ausgepr&auml;gterer WDF&ndash;Ausl&auml;ufer ein gr&ouml;&szlig;erer Wert ($K = 3.245$), und zwar  unabh&auml;ngig von $\lambda$.  
  
:Nur bei einer gau&szlig;verteilten Zufallsgr&ouml;&szlig;e gilt f&uuml;r die Kurtosis <i>K</i> = 3. Bei der Rayleighverteilung ergibt sich aufgrund ausgepr&auml;gterer WDF&ndash;Ausl&auml;ufer ein gr&ouml;&szlig;erer Wert (<i>K</i> = 3.245), und zwar  unabh&auml;ngig von <i>&lambda;</i>. Richtig ist <u>allein der zweite Lösungsvorschlag</u>.
 
  
:<b>2.</b>&nbsp;&nbsp;Die Ableitung der WDF nach <i>x</i> liefert:
+
'''(2)'''&nbsp; Die Ableitung der WDF nach $x$ liefert:
:$$\frac{\rm d\it f_x(x)}{\rm d \it x} = \frac{\rm 1}{\it \lambda^{\rm 2}}\cdot\rm e^{\it -{x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}+\frac{\it x}{\it \lambda^{\rm 2}}\cdot\rm e^{\it -{x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\cdot(-\frac{\rm 2\it x}{\rm 2\it \lambda^{\rm 2}}).$$
+
$$\frac{{\rm d} f_x(x)}{{\rm dx} = \frac{\rm 1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({2 \lambda^{\rm 2}})}+\frac{ x}{ \lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({ 2 \lambda^{\rm 2}})}\cdot(-\frac{2 x}{2 \lambda^{\rm 2}}).$$
  
:Daraus folgt als Bestimmungsgleichung f&uuml;r <i>x</i><sub>0</sub> (nur die positive Lösung ist sinnvoll):
+
Daraus folgt als Bestimmungsgleichung f&uuml;r $x_0$ (nur die positive Lösung ist sinnvoll):
:$$\frac{\it 1}{\it \lambda^{\rm 2}}\cdot\rm e^{\it -{x_{\rm 0}^{\rm 2}}/{(\rm 2 \it \lambda^{\rm 2}})}\cdot(\rm 1-\frac{\it x_{\rm 0}^{\rm 2}}{\it \lambda^{\rm 2}})=0 \quad  \Rightarrow  \quad {\it x}_0=\it \lambda.$$
+
$$\frac{1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x_{\rm 0}^{\rm 2}}/{(2 \lambda^{\rm 2}})}\cdot(\rm 1-\frac{\it x_{\rm 0}^{\rm 2}}{\it \lambda^{\rm 2}})=0 \quad  \Rightarrow  \quad {\it x}_0=\it \lambda.$$
  
:Somit erh&auml;lt man f&uuml;r den Verteilungsparameter <i>&lambda;</i> = <i>x</i><sub>0</sub> <u>= 2</u>.
+
Somit erh&auml;lt man f&uuml;r den Verteilungsparameter $\lambda = x_0\hspace{0.15cm}\underline{= 2}$.
  
:<b>3.</b>&nbsp;&nbsp;Die gesuchte Wahrscheinlichkeit ist gleich der Verteilungsfunktion an der Stelle <i>r</i> =  <i>x</i><sub>0</sub> = <i>&lambda;</i>:
 
:$$\rm Pr(\it x<x_{\rm 0})=\rm Pr(\it x \le x_{\rm 0})=
 
\it F_x(x_{\rm 0})=\rm 1-\rm e^{-{\it\lambda^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}=\rm 1-\rm e^{-0.5}\hspace{0.15cm}\underline{=\rm 0.393}.$$
 
  
:<b>4.</b>&nbsp;&nbsp;Der Mittelwert kann beispielsweise nach folgender Gleichung ermittelt werden:
+
'''(3)'''&nbsp; Die gesuchte Wahrscheinlichkeit ist gleich der Verteilungsfunktion an der Stelle $r = x_0 = \lambda$:
:$$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$
+
$${\rm Pr}(x<x_{\rm 0})={\rm Pr}( x \le x_{\rm 0})=
 +
F_x(x_{\rm 0})=1-{\rm e}^{-{\lambda^{\rm 2}}/({ 2 \lambda^{\rm 2}})}=1-{\rm e}^{-0.5}\hspace{0.15cm}\underline{=\rm 0.393}.$$
  
:Der Mittelwert ist nat&uuml;rlich gr&ouml;&szlig;er als der h&auml;ufigste Wert <i>x</i><sub>0</sub> (= Maximalwert der WDF), da die WDF zwar nach unten, aber nicht nach oben begrenzt ist.
 
  
:<b>5.</b>&nbsp;&nbsp;Allgemein gilt f&uuml;r die gesuchte Wahrscheinlichkeit:
+
'''(4)'''&nbsp; Der Mittelwert kann beispielsweise nach folgender Gleichung ermittelt werden:
:$$\rm Pr(\it x>m_x)=\rm 1-\it F_x(m_x).$$
+
$$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$
  
:Mit der angegebenen Verteilungsfunktion und dem Ergebnis aus (d) erh&auml;lt man:
+
Der Mittelwert $m_x$ ist nat&uuml;rlich gr&ouml;&szlig;er als $x_0$ (= Maximalwert der WDF), da die WDF zwar nach unten, aber nicht nach oben begrenzt ist.
:$$\rm Pr(\it x>{m_x})=\rm e^{-{\it m_x^{\rm 2}}/({\rm 2\it\lambda^{\rm 2})}}=\rm e^{\rm -\pi/\rm 4}\hspace{0.15cm}\underline{\approx \rm 0.456}.$$
+
 
 +
 
 +
'''(5)'''&nbsp; Allgemein gilt f&uuml;r die gesuchte Wahrscheinlichkeit:
 +
$${\rm Pr}(x>m_x)=1- F_x(m_x).$$
 +
 
 +
Mit der angegebenen Verteilungsfunktion und dem Ergebnis der Teilaufgabe (4) erh&auml;lt man:
 +
$${\rm Pr}(x>m_x)={\rm e}^{-{m_x^{\rm 2}}/({ 2\lambda^{\rm 2})}}={\rm e}^{-\pi/ 4}\hspace{0.15cm}\underline{\approx \rm 0.456}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Revision as of 16:04, 15 March 2017

Beschreibt die WDF Rayleigh oder Rice?

Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße $x$ ist wie folgt gegeben: $$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$

Entsprechend gilt für die zugehörige Verteilungsfunktion:

$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$

Bekannt ist, dass der Wert $x_0 = 2$ am häufigsten auftritt. Das bedeutet auch, dass die WDF $f_x(x)$ bei $x = x_0 $ maximal ist.


Hinweise:

$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2} \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$


Fragebogen

1

Welche der folgenden Aussagen treffen zu?

Es handelt sich um eine riceverteilte Zufallsgröße.
Es handelt sich um eine rayleighverteilte Zufallsgröße.
Das Zentralmoment 3. Ordnung   ⇒   $\mu_3$ ist $0$.
Die Kurtosis hat den Wert $K_x = 3$.

2

Welchen Zahlenwert hat hier der Verteilungsparameter $\lambda$?

$\lambda \ = $

3

Wie groß ist die Wahrscheinlichkeit, dass $x$ kleiner als $x_0$ ist?

${\rm Pr}(x < x_0 ) \ = $

4

Wie groß ist der Mittelwert der Zufallsgröße $x$? Interpretation.

$m_x \ = $

5

Mit welcher Wahrscheinlichkeit ist $x$ größer als sein Mittelwert $m_x$?

${\rm Pr}(x > m_x) \ = $


Musterlösung

(1)  Richtig ist allein der zweite Lösungsvorschlag.

  • Aufgrund der gegebenen WDF liegt keine Riceverteilung, sondern eine Rayleighverteilung vor.
  • Diese ist um den Mittelwert $m_x$ unsymmetrisch, so dass $\mu_3 \ne 0$ ist.
  • Nur bei einer gaußverteilten Zufallsgröße gilt für die Kurtosis $K = 3$.
  • Bei der Rayleighverteilung ergibt sich aufgrund ausgeprägterer WDF–Ausläufer ein größerer Wert ($K = 3.245$), und zwar unabhängig von $\lambda$.


(2)  Die Ableitung der WDF nach $x$ liefert: $$\frac{{\rm d} f_x(x)}{{\rm d} x} = \frac{\rm 1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({2 \lambda^{\rm 2}})}+\frac{ x}{ \lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({ 2 \lambda^{\rm 2}})}\cdot(-\frac{2 x}{2 \lambda^{\rm 2}}).$$

Daraus folgt als Bestimmungsgleichung für $x_0$ (nur die positive Lösung ist sinnvoll): $$\frac{1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x_{\rm 0}^{\rm 2}}/{(2 \lambda^{\rm 2}})}\cdot(\rm 1-\frac{\it x_{\rm 0}^{\rm 2}}{\it \lambda^{\rm 2}})=0 \quad \Rightarrow \quad {\it x}_0=\it \lambda.$$

Somit erhält man für den Verteilungsparameter $\lambda = x_0\hspace{0.15cm}\underline{= 2}$.


(3)  Die gesuchte Wahrscheinlichkeit ist gleich der Verteilungsfunktion an der Stelle $r = x_0 = \lambda$: $${\rm Pr}(x<x_{\rm 0})={\rm Pr}( x \le x_{\rm 0})= F_x(x_{\rm 0})=1-{\rm e}^{-{\lambda^{\rm 2}}/({ 2 \lambda^{\rm 2}})}=1-{\rm e}^{-0.5}\hspace{0.15cm}\underline{=\rm 0.393}.$$


(4)  Der Mittelwert kann beispielsweise nach folgender Gleichung ermittelt werden: $$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$

Der Mittelwert $m_x$ ist natürlich größer als $x_0$ (= Maximalwert der WDF), da die WDF zwar nach unten, aber nicht nach oben begrenzt ist.


(5)  Allgemein gilt für die gesuchte Wahrscheinlichkeit: $${\rm Pr}(x>m_x)=1- F_x(m_x).$$

Mit der angegebenen Verteilungsfunktion und dem Ergebnis der Teilaufgabe (4) erhält man: $${\rm Pr}(x>m_x)={\rm e}^{-{m_x^{\rm 2}}/({ 2\lambda^{\rm 2})}}={\rm e}^{-\pi/ 4}\hspace{0.15cm}\underline{\approx \rm 0.456}.$$