Difference between revisions of "Aufgaben:Exercise 4.10Z: Correlation Duration"
Line 27: | Line 27: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welchen Effektivwert besitzen die Mustersignale des Prozesses { | + | {Welchen Effektivwert $(\sigma_x)$ besitzen die Mustersignale des Prozesses $\{x_i(t)\}$? |
|type="{}"} | |type="{}"} | ||
− | $\sigma_x$ | + | $\sigma_x \ = $ { 0.5 3% } $\ \rm V$ |
− | {Welche AKF-Werte ergeben sich für | + | {Welche AKF-Werte ergeben sich für $\tau = 2\hspace{0.05 cm}\rm \mu s$ bzw. $\tau = 5\hspace{0.05 cm}\rm \mu s$? |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $ { 3.025 3% } $\ \rm mW$ |
− | $\ | + | $\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $ { 0.216 3% } $\ \rm mW$ |
− | {Wie groß ist die Korrelationsdauer | + | {Wie groß ist die Korrelationsdauer $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die Hälfte des Maximums abgefallen ist? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $T_{\rm K} \ = $ { 2.35 3% } $\ \rm \mu s$ |
− | {Welchen Effektivwert besitzen die Mustersignale des Prozesses { | + | {Welchen Effektivwert $(\sigma_y)$ besitzen die Mustersignale des Prozesses $\{y_i(t)\}$? |
|type="{}"} | |type="{}"} | ||
− | $\sigma_y$ | + | $\sigma_y \ = $ { 0.4 3% } $\ \rm V$ |
− | {Berechnen Sie die AKF | + | {Berechnen Sie die AKF $\varphi_x(\tau)$. Wie groß ist der AKF-Wert bei $\tau = 10\hspace{0.05 cm}\rm \mu s$? Welcher AKF-Verlauf ergäbe sich bei positivem Mittelwert $(m_y = +0.3 \hspace{0.05 cm}\rm V)$? |
|type="{}"} | |type="{}"} | ||
− | $\ | + | $\varphi_y(\tau = 10\hspace{0.05 cm}{\rm \mu s}) \ = $ { 1.938 3% } $\ \rm mW$ |
Revision as of 15:06, 24 March 2017
Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse $\{x_i(t)\}$ und $\{y_i(t)\}$ mit jeweils gleicher Leistung $P_x = P_y = 5\hspace{0.05 cm} \rm mW$. Vorausgesetzt ist hierbei der Widerstand $R = 50\hspace{0.05 cm}\rm \Omega$. Der Prozess $\{x_i(t)\}$
- ist mittelwertfrei $(m_x = 0)$,
- besitzt die gaußförmige AKF
- $$\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$$
- und weist eine äquivalente AKF-Dauer $\nabla \tau_x = 5\hspace{0.05 cm}\rm \mu s $ auf.
Wie aus dem unteren Bild zu erkennen ist, hat der Prozess $\{y_i(t)\}$ sehr viel stärkere innere statistische Bindungen als der Prozess $\{x_i(t)\}$.
Oder anders ausgedrückt: Der Zufallsprozess $\{y_i(t)\}$ ist niederfrequenter als $\{x_i(t)\}$. Die äquivalente AKF-Dauer ist $\nabla \tau_y = 10 \hspace{0.05 cm}\rm \mu s $.
Aus der Skizze ist auch zu erkennen, dass $\{y_i(t)\}$ im Gegensatz zu $\{x_i(t)\}$ nicht gleichsignalfrei ist. Der Gleichsignalanteil beträgt vielmehr $m_y = -0.3 \hspace{0.05 cm}\rm V$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Autokorrelationsfunktion.
- Bezug genommen wird insbesondere auf die Seite Interpretation der Autokorrelationsfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- 1. Der quadratische Mittelwert ergibt sich zu R · Px = 50 Ω · 5 mW = 0.25 V2. Daraus folgt der Effektivwert σx = 0.5V.
- 2. Wegen Px = φx(τ = 0) gilt für die AKF allgemein:
- $$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
- Daraus erhält man:
- $$\varphi_x (\tau = {\rm 2\hspace{0.1cm} \mu s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
- $$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm \mu s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$
- 3. Hier gilt folgende Bestimmungsgleichung:
- $${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ ln(2)}/{\pi}}\hspace{0.05cm}.$$
- Daraus folgt TK = 2.35 μs. Bei anderer AKF-Form erhält man ein anderes Verhältnis für TK/∇τx.
- 4. Wegen Px = Py sind die quadratischen Mittelwerte von x und y gleich, und zwar jeweils 0.25 V2. Unter Berücksichtigung des Mittelwertes my = –0.3 V gilt:
- $$m_y^2 + \sigma_y^2 = \rm 0.25 V^2.$$
- Daraus folgt σy = 0.4 V.
- 5. Bezogen auf den Einheitswiderstand R = 1 Ω lautet die AKF des Prozesses {yi(t)}:
- $$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
- Rechts sehen Sie den Funktionsverlauf. Bezogen auf den Widerstand R = 50 Ω ergeben sich die nachfolgend angegebenen AKF-Werte:
- $$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.1cm} \atop \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
- Daraus folgt:
- $$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}$$
- mit dem Zahlenwert 1.938 mW bei τ = 10 μs. Bei positivem Mittelwert my (mit gleichem Betrag) würde sich an der AKF nichts ändern, da my in die AKF-Gleichung quadratisch eingeht.