Difference between revisions of "Aufgaben:Exercise 4.15: PDF and Covariance Matrix"
Line 81: | Line 81: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Richtig ist nur <u>der Lösungsvorschlag 2</u>: | |
− | + | *Anhand der Kovarianzmatrix $\mathbf{K}_{\mathbf{x}}$ ist keine Aussage darüber möglich, ob die zugrunde liegende Zufallsgröße $\mathbf{x}$ mittelwertfrei oder mittelwertbehaftet ist, da ein eventueller Mittelwert $\mathbf{m}$ herausgerechnet wird. | |
+ | *Um Aussagen über den Mittelwert machen zu können, müsste die Korrelationsmatrix $\mathbf{R}_{\mathbf{x}}$ bekannt sein. | ||
+ | *Aus $K_{22} = \sigma_2^2 = 0$ folgt zwingend, dass alle anderen Elemente in der zweiten Zeile $(K_{21}, K_{23})$ und der zweiten Spalte $(K_{12}, K_{32})$ ebenfalls $0$ sind. | ||
+ | *Dagegen ist die dritte Aussage falsch: Die Elemente sind symmetrisch zur Hauptdiagonalen, so dass stets $K_{31} = K_{13}$ gelten muss. | ||
− | : | + | |
+ | [[File:P_ID2915__Sto_A_4_15a.png|right|Vollständige Kovarianzmatrix]] | ||
+ | '''(2)''' Aus $K_{11} = 1$ und $K_{33} = 0.25$ folgen direkt $\sigma_1 = 1$ und $\sigma_3 = 0.5$. Zusammen mit dem Korrelationskoeffizienten $\rho_{13} = 0.8$ (siehe Angabenblatt) erhält man somit: | ||
:$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$ | :$$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$ | ||
− | + | '''(3)''' Die Determinante der Matrix $\mathbf{K_y}$ lautet: | |
:$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$ | :$$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$ | ||
− | + | '''(4)''' Entsprechend den Angaben auf den Seiten „Determinante einer Matrix” und „Inverse einer Matrix” gilt: | |
:$${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = | :$${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = | ||
\frac{1}{|{\mathbf{K_y}}|}\cdot \left[ | \frac{1}{|{\mathbf{K_y}}|}\cdot \left[ | ||
Line 98: | Line 103: | ||
\end{array} \right].$$ | \end{array} \right].$$ | ||
− | + | Mit $|\mathbf{K_y}|= 0.09$ gilt deshalb weiter: | |
− | :$$I_{11} = | + | :$$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{= |
− | =- | ||
11.111}.$$ | 11.111}.$$ | ||
− | + | ||
+ | '''(5)''' Ein Vergleich der Matrizen $\mathbf{K_y}$ und $\mathbf{K_x}$ unter der Nebenbedingung $K_{22} = 0$ zeigt, dass $\mathbf{x}$ und $\mathbf{y}$ identische Zufallsgrößen sind, wenn man $y_1 = x_1$ und $y_2 = x_3$ setzt. Somit gilt für die WDF-Parameter: | ||
:$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho = | :$$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho = | ||
0.8.$$ | 0.8.$$ | ||
− | + | Der Vorfaktor entsprechend der allgemeinen WDF-Definition ist somit: | |
:$$C =\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}= | :$$C =\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}= | ||
\frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 | \frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 | ||
\cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$ | \cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$ | ||
− | + | Mit der in der Teilaufgabe (3) berechneten Determinante ergibt sich das gleiche Ergebnis: | |
:$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm | :$$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm | ||
1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$ | 1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$ | ||
− | + | '''(6)''' Die in der Teilaufgabe (4) berechnete inverse Matrix kann auch wie folgt geschrieben werden: | |
:$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ | :$${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ | ||
\begin{array}{cc} | \begin{array}{cc} | ||
Line 123: | Line 128: | ||
\end{array} \right].$$ | \end{array} \right].$$ | ||
− | + | Somit lautet das Argument $A$ der Exponentialfunktion: | |
:$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ | :$$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ | ||
\begin{array}{cc} | \begin{array}{cc} | ||
Line 131: | Line 136: | ||
y_2\right).$$ | y_2\right).$$ | ||
− | + | Durch Koeffizientenvergleich ergibt sich: | |
:$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = | :$$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = | ||
\frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - | \frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - | ||
\frac{80}{18} \approx -4.444.$$ | \frac{80}{18} \approx -4.444.$$ | ||
− | + | Entsprechend der herkömmlichen Vorgehensweise ergeben sich die gleichen Zahlenwerte: | |
:$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm | :$$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm | ||
1-\rho^2})}= | 1-\rho^2})}= |
Revision as of 10:14, 3 April 2017
Wir betrachten hier die dreidimensionale Zufallsgröße $\mathbf{x}$, deren allgemein dargestellte Kovarianzmatrix $\mathbf{K}_{\mathbf{x}}$ in der Grafik angegeben ist. Die Zufallsgröße besitzt folgende Eigenschaften:
- Die drei Komponenten sind gaußverteilt und es gilt für die Elemente der Kovarianzmatrix:
- $$K_{ij} = \sigma_i \cdot \sigma_j \cdot \rho_{ij}.$$
- Die Elemente auf der Hauptdiagonalen seien bekannt:
- $$ K_{11} =1, K_{22} =0, K_{33} =0.25.$$
- Der Korrelationskoeffizient zwischen den Koeffizienten $x_1$ und $x_3$ beträgt $\rho_{13} = 0.8$.
Im zweiten Teil der Aufgabe soll die Zufallsgröße $\mathbf{y}$ mit den beiden Komponenten $y_1$ und $y_2$ betrachtet werden, deren Kovarianzmatrix $\mathbf{K}_{\mathbf{y}}$ durch die angegebenen Zahlenwerte $(1, 0.4, 0.25)$ bestimmt ist.
Die Wahrscheinlichkeitsdichtefunktion einer mittelwertfreien Gaußschen zweidimensionalen Zufallsgröße $\mathbf{y}$ lautet gemäß den Angaben auf der Seite Zusammenhang zwischen Kovarianzmatrix und WDF mit $N = 2$:
- $$\mathbf{f_y}(\mathbf{y}) = \frac{1}{{(2 \pi) \cdot \sqrt{|\mathbf{K_y}|}}}\cdot {\rm exp}{\left(-\frac{1}{2}\cdot \mathbf{y} ^{\rm T}\cdot\mathbf{K_y}^{-1} \cdot \mathbf{y} \right)}= C \cdot {\rm exp}{\left(-\gamma_1 \cdot y_1^2 + \gamma_2 \cdot y_2^2 +\gamma_{12} \cdot y_1 \cdot y_2 \right)}.$$
In den Teilaufgaben (5) und (6) sollen der Vorfaktor $C$ und die weiteren WDF-Koeffizienten $\gamma_1$, $\gamma_2$ und $\gamma_{12}$ gemäß dieser Vektordarstellung berechnet werden. Dagegen würde die entsprechende Gleichung bei herkömmlicher Vorgehensweise entsprechend dem Kapitel Zweidimensionale Gaußsche Zufallsgrößen lauten:
- $$f_{y_1,\hspace{0.1cm}y_2}(y_1,y_2)=\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}\cdot\exp\Bigg[-\frac{\rm 1}{\rm 2 (1-\rho^{\rm 2})}\cdot(\frac { y_1^{\rm 2}}{\sigma_1^{\rm 2}}+\frac { y_2^{\rm 2}}{\sigma_2^{\rm 2}}-\rm 2\rho \frac{{\it y}_1{\it y}_2}{\sigma_1 \cdot \sigma_2}) \rm \Bigg].$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Verallgemeinerung auf N-dimensionale Zufallsgrößen.
- Einige Grundlagen zur Anwendung von Vektoren und Matrizen finden sich auf den Seiten Determinante einer Matrix sowie Inverse einer Matrix
- Bezug genommen wird auch auf das Kapitel Zweidimensionale Gaußsche Zufallsgrößen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Anhand der Kovarianzmatrix $\mathbf{K}_{\mathbf{x}}$ ist keine Aussage darüber möglich, ob die zugrunde liegende Zufallsgröße $\mathbf{x}$ mittelwertfrei oder mittelwertbehaftet ist, da ein eventueller Mittelwert $\mathbf{m}$ herausgerechnet wird.
- Um Aussagen über den Mittelwert machen zu können, müsste die Korrelationsmatrix $\mathbf{R}_{\mathbf{x}}$ bekannt sein.
- Aus $K_{22} = \sigma_2^2 = 0$ folgt zwingend, dass alle anderen Elemente in der zweiten Zeile $(K_{21}, K_{23})$ und der zweiten Spalte $(K_{12}, K_{32})$ ebenfalls $0$ sind.
- Dagegen ist die dritte Aussage falsch: Die Elemente sind symmetrisch zur Hauptdiagonalen, so dass stets $K_{31} = K_{13}$ gelten muss.
(2) Aus $K_{11} = 1$ und $K_{33} = 0.25$ folgen direkt $\sigma_1 = 1$ und $\sigma_3 = 0.5$. Zusammen mit dem Korrelationskoeffizienten $\rho_{13} = 0.8$ (siehe Angabenblatt) erhält man somit:
- $$K_{13} = K_{31} = \sigma_1 \cdot \sigma_2 \cdot \rho_{13}\hspace{0.15cm}\underline{= 0.4}.$$
(3) Die Determinante der Matrix $\mathbf{K_y}$ lautet:
- $$|{\mathbf{K_y}}| = 1 \cdot 0.25 - 0.4 \cdot 0.4 \hspace{0.15cm}\underline{= 0.09}.$$
(4) Entsprechend den Angaben auf den Seiten „Determinante einer Matrix” und „Inverse einer Matrix” gilt:
- $${\mathbf{I_y}} = {\mathbf{K_y}}^{-1} = \frac{1}{|{\mathbf{K_y}}|}\cdot \left[ \begin{array}{cc} 0.25 & -0.4 \\ -0.4 & 1 \end{array} \right].$$
Mit $|\mathbf{K_y}|= 0.09$ gilt deshalb weiter:
- $$I_{11} = {25}/{9}\hspace{0.15cm}\underline{ = 2.777};\hspace{0.3cm} I_{12} = I_{21} = -40/9 \hspace{0.15cm}\underline{ = -4.447};\hspace{0.3cm}I_{22} = {100}/{9} \hspace{0.15cm}\underline{= 11.111}.$$
(5) Ein Vergleich der Matrizen $\mathbf{K_y}$ und $\mathbf{K_x}$ unter der Nebenbedingung $K_{22} = 0$ zeigt, dass $\mathbf{x}$ und $\mathbf{y}$ identische Zufallsgrößen sind, wenn man $y_1 = x_1$ und $y_2 = x_3$ setzt. Somit gilt für die WDF-Parameter:
- $$\sigma_1 =1, \hspace{0.3cm} \sigma_2 =0.5, \hspace{0.3cm} \rho = 0.8.$$
Der Vorfaktor entsprechend der allgemeinen WDF-Definition ist somit:
- $$C =\frac{\rm 1}{\rm 2\pi \sigma_1 \sigma_2 \sqrt{\rm 1-\rho^2}}= \frac{\rm 1}{\rm 2\pi \cdot 1 \cdot 0.5 \cdot 0.6}= \frac{1}{0.6 \cdot \pi} \hspace{0.15cm}\underline{\approx 0.531}.$$
Mit der in der Teilaufgabe (3) berechneten Determinante ergibt sich das gleiche Ergebnis:
- $$C =\frac{\rm 1}{\rm 2\pi \sqrt{|{\mathbf{K_y}}|}}= \frac{\rm 1}{\rm 2\pi \sqrt{0.09}} = \frac{1}{0.6 \cdot \pi}.$$
(6) Die in der Teilaufgabe (4) berechnete inverse Matrix kann auch wie folgt geschrieben werden:
- $${\mathbf{I_y}} = \frac{5}{9}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right].$$
Somit lautet das Argument $A$ der Exponentialfunktion:
- $$A = \frac{5}{18}\cdot{\mathbf{y}}^{\rm T}\cdot \left[ \begin{array}{cc} 5 & -8 \\ -8 & 20 \end{array} \right]\cdot{\mathbf{y}} =\frac{5}{18}\left( 5 \cdot y_1^2 + 20 \cdot y_2^2 -16 \cdot y_1 \cdot y_2\right).$$
Durch Koeffizientenvergleich ergibt sich:
- $$\gamma_1 = \frac{25}{18} \approx 1.389; \hspace{0.3cm} \gamma_2 = \frac{100}{18} \approx 5.556; \hspace{0.3cm} \gamma_{12} = - \frac{80}{18} \approx -4.444.$$
Entsprechend der herkömmlichen Vorgehensweise ergeben sich die gleichen Zahlenwerte:
- $$\gamma_1 =\frac{\rm 1}{\rm 2\cdot \sigma_1^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 1 \cdot 0.36} \hspace{0.15cm}\underline{ \approx 1.389},$$
- $$\gamma_2 =\frac{\rm 1}{\rm 2 \cdot\sigma_2^2 \cdot ({\rm 1-\rho^2})}= \frac{\rm 1}{\rm 2 \cdot 0.25 \cdot 0.36} = 4 \cdot \gamma_1 \hspace{0.15cm}\underline{\approx 5.556},$$
- $$\gamma_{12} =-\frac{\rho}{ \sigma_1 \cdot \sigma_2 \cdot ({\rm 1-\rho^2})}= -\frac{\rm 0.8}{\rm 1 \cdot 0.5 \cdot 0.36} \hspace{0.15cm}\underline{ \approx -4.444}.$$