Difference between revisions of "Aufgaben:Exercise 4.Ten: QPSK Channel Capacity"

From LNTwww
Line 61: Line 61:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
[[File:P_ID2958__Inf_A_4_10a.png|right|]]
 +
'''(1)'''  Die Grafik zeigt die Signalraumkonstellationen für
 +
:* QPSK (<i>Quaternary Phase Shift Keying</i>), und
 +
:* 4&ndash;QAM (vierstufige Quadraturamplitudenmodulation).
 +
 
 +
Letztere wird auch als [[Informationstheorie/AWGN–Kanalkapazität_bei_wertdiskretem_Eingang|'''&pi;/4&ndash;QPSK''']]
 
'''2.'''
 
'''2.'''
 
'''3.'''
 
'''3.'''

Revision as of 01:09, 20 April 2017

P ID2957 Inf A 4 10 neu.png

Gegeben sind AWGN–Kanalkapazitätskurven für die beiden Modulationsverfahren

Das obere Diagramm zeigt die Abhängigkeit von 10 · lg (EB/N0) in dB, wobei EB die „Energie pro Informationsbit” angibt. Für große EB/N0–Werte liefert die BPSK–Kurve die maximale Coderate R ≈ 1, während für die QPSK–Kurve R ≈ 2 abgelesen werden kann.

Die Kapazitätskurven für digitalen Eingang (jeweils mit der Einheit „bit/Symbol”),

  • grüne Kurve CBPSK(EB/N0) und
  • blaue Kurve CQPSK(EB/N0)

sollen in der Teilaufgabe (c) in Bezug gesetzt werden zu zwei Shannon–Grenzkurven, die jeweils für eine Gaußsche Eingangsverteilung gültig sind: $$C_1( E_{\rm B}/{N_0}) = \frac{1}{2} \cdot {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { 2\hspace{0.05cm}R\hspace{0.05cm} E_{\rm B}}{N_0}) ,$$ $$C_2( E_{\rm B}/{N_0}) = {\rm log}_2 \hspace{0.1cm} ( 1 + \frac { R\hspace{0.05cm} E_{\rm B}}{N_0}) .$$ Die beiden Kurven geben gleichzeitig die maximale Coderate R an, mit der durch lange Kanalcodes eine fehlerfreie Übertragung entsprechend dem Kanalcodierungstheorem möglich ist. Natürlich gelten für C1(EB/N0) bzw. C2(EB/N0) unterschiedliche Randbedingungen. Welche, sollen Sie herausfinden.

Die Abszisse im unteren Diagramm ist dagegen 10 · lg (ES/N0) mit der „Energie pro Symbol” (ES). Die beiden Endwerte bleiben gegenüber oben unverändert.

Hinweis :


Fragebogen

1

Unterscheiden sich QPSK und 4–QAM aus informationstechnischer Sicht?

Ja.
Nein.

2

Wie lässt sich CQPSK(EB/N0) aus CBPSK(EB/N0) konstruieren?

Durch Verdopplung: CQPSK(EB/N0)  =  2 · CBPSK(EB/N0).
Zusätzlich durch eine Verschiebung nach rechts.
Zusätzlich durch eine Verschiebung nach links.
CQPSK(EB/N0) kann man aus CBPSK(EB/N0) nicht konstruieren.

3

Welcher Zusammenhang besteht zu den Shannon–Grenzkurven?

Es gilt CBPSK(EB/N0) ≤ C1(EB/N0).
Es gilt CBPSK(EB/N0) ≤ C2(EB/N0).
Es gilt CQPSK(EB/N0) ≤ C1(EB/N0).
Es gilt CQPSK(EB/N0) ≤ C2(EB/N0).

4

Wie lässt sich CQPSK(ES/N0) aus CBPSK(ES/N0) konstruieren?

Durch Verdopplung: CQPSK (ES/N0)  =  2 · CBPSK(ES/N0).
Zusätzlich durch eine Verschiebung nach rechts.
Zusätzlich durch eine Verschiebung nach links.
CQPSK(ES/N0) kann man aus CBPSK(ES/N0) nicht konstruieren.


Musterlösung

P ID2958 Inf A 4 10a.png

(1)  Die Grafik zeigt die Signalraumkonstellationen für

  • QPSK (Quaternary Phase Shift Keying), und
  • 4–QAM (vierstufige Quadraturamplitudenmodulation).

Letztere wird auch als π/4–QPSK 2. 3. 4. 5. 6. 7.