Difference between revisions of "Aufgaben:Exercise 2.5Z: Linear Distortions with DSB-AM"
m (Guenter verschob die Seite 2.5Z Wieder Verzerrungen nach 2.5Z Nochmals Verzerrungen bei ZSB-AM) |
|||
Line 3: | Line 3: | ||
}} | }} | ||
− | [[File:P_ID1013__Mod_Z_2_5.png|right|]] | + | [[File:P_ID1013__Mod_Z_2_5.png|right|frame|Zur Berücksichtigung des Kanalfrequenzgangs]] |
− | + | Untersucht wird hier wie in der [[Aufgaben:2.5_ZSB–AM_über_einen_Gaußkanal|Aufgabe 2.5]] wieder | |
+ | *die Kombination ZSB–AM/Synchrondemodulator | ||
+ | *bei Berücksichtigung eines linear verzerrenden Kanals . | ||
− | Das Quellensignal $q(t)$ sei ein Cosinussignal mit Amplitude $ | + | |
− | $$S(f)= \frac{A_{\rm N}}{4} \cdot \left[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \right]\hspace{0.05cm}.$$ | + | Das Quellensignal $q(t)$ sei ein Cosinussignal mit Amplitude $A_{\rm N}$ und Frequenz $f_{\rm N}$, so dass das Spektrum des modulierten Signals wie folgt lautet: |
− | Die Abkürzungen stehen für $ | + | :$$S(f)= \frac{A_{\rm N}}{4} \cdot \left[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \right]\hspace{0.05cm}.$$ |
− | $$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$ | + | Die Abkürzungen stehen für $f_{\rm O} = f_{\rm T} + f_{\rm N}$ ('''O'''beres Seitenband) und $f_{\rm U} = f_{\rm T} - f_{\rm N}$ ('''U'''nteres Seitenband). |
− | Für negative Frequenzen gilt stets $ | + | |
+ | Der Kanalfrequenzgang ist nur für diese beiden Frequenzen gegeben und lautet: | ||
+ | :$$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$ | ||
+ | Für negative Frequenzen gilt stets $H_{\rm K}(– f) = H_{\rm K}^*(f)$. | ||
Verwenden Sie bei numerischen Berechnungen folgende Zahlenwerte: | Verwenden Sie bei numerischen Berechnungen folgende Zahlenwerte: | ||
− | $$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$ | + | :$$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$ |
− | $$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$ | + | :$$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$ |
− | In der Teilaufgabe | + | In der Teilaufgabe (3) soll die Lösung über den resultierenden Frequenzgang von Modulator, Kanal und Demodulator erfolgen: |
− | $$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\right]\hspace{0.05cm}.$$ | + | :$$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\right]\hspace{0.05cm}.$$ |
− | Abschließend wird in der Teilaufgabe | + | Abschließend wird in der Teilaufgabe (4) der folgende Kanalfrequenzgang betrachtet (die Darstellung gilt nur für positive Frequenzen): |
− | $$ H_{\rm K}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$ | + | :$$ H_{\rm K}(f) = H_{\rm(4)}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$ |
− | '' | + | |
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Synchrondemodulation|Synchrondemodulation]]. | ||
+ | *Bezug genommen wird insbesondere auf die Seite [[Modulationsverfahren/Synchrondemodulation#Einfluss_linearer_Kanalverzerrungen|Einfluss linearer Kanalverzerrungen]]. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | |||
Line 26: | Line 37: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | + | {Es gelte $R_{\rm U} = 0.8, I_{\rm U} = -0.2, R_{\rm O} = 0.4, I_{\rm O} = -0.2.$ Berechnen und skizzieren Sie das Spektrum $R(f)$ am Kanalausgang. Wie lautet die Spektrallinie bei $-f_{\rm O}$? | |
− | { | ||
|type="{}"} | |type="{}"} | ||
− | $Re[R( | + | ${\rm Re}[R(-f_{\rm O})] \ = \ $ { 0.2 3% } $\ \text{V}$ |
− | $Im[R( | + | ${\rm Im}[R(-f_{\rm O})] \ = \ $ { 0.1 3% } $\ \text{V}$ |
− | {Wie lautet das Sinkensignal $ | + | {Wie lautet das Sinkensignal $v(t)$? Berücksichtigen Sie bei der Berechnung auch den Tiefpass des Synchrondemodulators. Wie groß ist der Signalwert bei $t = 0$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $ v(t = 0) \ = \ $ { 1.2 3% } $\ \text{V}$ |
− | {Berechnen Sie nun das Sinkensignal $ | + | {Berechnen Sie nun das Sinkensignal $v(t)$ über den resultierenden Frequenzgang $H_{\rm MKD}(f)$ und bewerten Sie den Rechengang. |
|type="[]"} | |type="[]"} | ||
− | - Die Berechnung gemäß Teilaufgabe | + | - Die Berechnung gemäß Teilaufgabe (2) führt schneller zum Erfolg. |
− | + Die Berechnung gemäß Teilaufgabe | + | + Die Berechnung gemäß Teilaufgabe (3) führt schneller zum Erfolg. |
− | {Berechnen Sie $ | + | {Berechnen Sie $v(t)$ für den Kanalfrequenzgang $ H_{\rm K}(f) = H_{\rm(4)}(f)$. Wie groß ist der Signalwert bei $t = 0$? |
|type="{}"} | |type="{}"} | ||
− | $v(t=0)$ | + | $ v(t = 0) \ = \ $ { 1.835 3% } $\ \text{V}$ |
</quiz> | </quiz> | ||
Revision as of 10:06, 28 June 2017
Untersucht wird hier wie in der Aufgabe 2.5 wieder
- die Kombination ZSB–AM/Synchrondemodulator
- bei Berücksichtigung eines linear verzerrenden Kanals .
Das Quellensignal $q(t)$ sei ein Cosinussignal mit Amplitude $A_{\rm N}$ und Frequenz $f_{\rm N}$, so dass das Spektrum des modulierten Signals wie folgt lautet:
- $$S(f)= \frac{A_{\rm N}}{4} \cdot \left[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \right]\hspace{0.05cm}.$$
Die Abkürzungen stehen für $f_{\rm O} = f_{\rm T} + f_{\rm N}$ (Oberes Seitenband) und $f_{\rm U} = f_{\rm T} - f_{\rm N}$ (Unteres Seitenband).
Der Kanalfrequenzgang ist nur für diese beiden Frequenzen gegeben und lautet:
- $$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$
Für negative Frequenzen gilt stets $H_{\rm K}(– f) = H_{\rm K}^*(f)$.
Verwenden Sie bei numerischen Berechnungen folgende Zahlenwerte:
- $$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$
- $$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$
In der Teilaufgabe (3) soll die Lösung über den resultierenden Frequenzgang von Modulator, Kanal und Demodulator erfolgen:
- $$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\right]\hspace{0.05cm}.$$
Abschließend wird in der Teilaufgabe (4) der folgende Kanalfrequenzgang betrachtet (die Darstellung gilt nur für positive Frequenzen):
- $$ H_{\rm K}(f) = H_{\rm(4)}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Synchrondemodulation.
- Bezug genommen wird insbesondere auf die Seite Einfluss linearer Kanalverzerrungen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
1.Es gilt $R(f) = S(f) · H_K(f)$. Damit erhält man das Linienspektrum entsprechend der folgenden Skizze (alle Gewichte sind noch um die Einheit „V” zu ergänzen). Das Gewicht der Spektrallinie bei $f = –f_O$ setzt sich aus dem Realteil 0.2 V und dem Imaginärteil 0.1 V zusammen.
2. Die Spektralfunktion von $υ(t)$ lautet:
$$V(f) = \left[ R(f) \star \left[\delta(f - f_{\rm T}) + \delta(f + f_{\rm T}) \right]\right]\cdot H_{\rm E}(f) =$$
$$= \frac{A_{\rm N}}{4} \cdot (R_{\rm O} + {\rm j} \cdot I_{\rm O}) \cdot \delta(f - f_{\rm N}) + \frac{A_{\rm N}}{4} \cdot (R_{\rm U} + {\rm j} \cdot I_{\rm U}) \cdot \delta(f + f_{\rm N})+$$
$$+ \frac{A_{\rm N}}{4} \cdot (R_{\rm O} - {\rm j} \cdot I_{\rm O}) \cdot \delta(f + f_{\rm N})+ \frac{A_{\rm N}}{4} \cdot (R_{\rm U} - {\rm j} \cdot I_{\rm U}) \cdot \delta(f - f_{\rm N}) \hspace{0.05cm}.$$
Alle anderen Terme liegen um die doppelte Trägerfrequenz und werden durch den Tiefpass eliminiert. Umsortieren und Zusammenfassen der Terme führt zu:
$$V(f) = A_{\rm N}\cdot \frac{R_{\rm U} +R_{\rm O}}{2}\cdot \frac{1}{2} \cdot \left[\delta(f - f_{\rm N}) + \delta(f + f_{\rm N}) \right] +$$
$$+ A_{\rm N}\cdot \frac{I_{\rm U} - I_{\rm O}}{2}\cdot \frac[[:Template:\rm j]]{2} \cdot \left[-\delta(f - f_{\rm N}) + \delta(f + f_{\rm N}) \right]$$
$$ \Rightarrow \hspace{0.3cm}v(t) = A_{\rm N}\cdot \frac{R_{\rm U} +R_{\rm O}}{2}\cdot\cos (\omega_{\rm N}\cdot t)+ A_{\rm N}\cdot \frac{I_{\rm U} -I_{\rm O}}{2}\cdot\sin (\omega_{\rm N}\cdot t)\hspace{0.05cm}.$$
Mit $R_U = 0.8$, $R_O = 0.4$ und $I_O = I_U = – 0.2$ folgt daraus:
$$v(t) = 0.6 \cdot A_{\rm N}\cdot \cos (\omega_{\rm N}\cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} v(t=0) = 0.6 \cdot A_{\rm N}\hspace{0.15cm}\underline {= 1.2\,{\rm V}}\hspace{0.05cm}.$$
Es ergibt sich gegenüber $q(t)$ eine Dämpfung um den Faktor 0.6. Der Synchrondemodulator bekommt durch das untere Seitenband mehr Information über das Quellensignal als über das obere. Wegen der Eigenschaft $I_O = I_U$ ist $υ(t)$ ebenfalls cosinusförmig. Es tritt demnach keine Laufzeit auf bzw. die Laufzeit ist ein geradzahliges Vielfaches der Periodendauer.
3.Hier gelten folgende Gleichungen:
$$ H_{\rm K}(f_{\rm N}+ f_{\rm T}) = R_{\rm O} + {\rm j} \cdot I_{\rm O} \hspace{0.05cm},$$
$$H_{\rm K}(f_{\rm N}- f_{\rm T}) = H_{\rm K}^{\star}(f_{\rm T}- f_{\rm N}) = R_{\rm U} - {\rm j} \cdot I_{\rm U} \hspace{0.05cm},$$
$$\Rightarrow \hspace{0.3cm} H_{\rm MKD}(f_{\rm N}) = \frac{1}{2} \cdot \left[(R_{\rm O} +R_{\rm U}) + {\rm j} \cdot (I_{\rm O} -I_{\rm U}) \right]\hspace{0.05cm},$$
$$H_{\rm MKD}(-f_{\rm N}) = H_{\rm MKD}^\star(f_{\rm N}) = \frac{1}{2} \cdot \left[(R_{\rm O} +R_{\rm U}) - {\rm j} \cdot (I_{\rm O} -I_{\rm U}) \right]\hspace{0.05cm}.$$
Man erhält somit das gleiche Ergebnis wie unter (b), aber schneller ⇒ Lösungsvorschlag 2.
4.Für f > 0 lautet nun der resultierende Frequenzgang:
$$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f_{\rm T}+ f) + H_{\rm K}^\star(f_{\rm T}-f)\right]=$$ $$ = {1}/{2} \cdot \left[ \frac{1}{1 + 3{\rm j} \cdot (\frac{f_{\rm T}+f}{f_{\rm T}} - 1)} + \frac{1}{1 - 3{\rm j} \cdot (\frac{f_{\rm T}-f}{f_{\rm T}} - 1)}\right] = \frac{1}{1 + {\rm j} \cdot {3f}/{f_{\rm T}} } \hspace{0.05cm}.$$
Eingesetzt an der Stelle $f = f_N$ führt dies zum Ergebnis:
$$H_{\rm MKD}(f_{\rm N}) = \frac{1}{1 + {\rm j} \cdot {3f_{\rm N}}/{f_{\rm T}} }\hspace{5cm} $$
$$ \Rightarrow \hspace{0.3cm}{\rm Betrag} = \frac{1}{\sqrt{1 + ({3f_{\rm N}}/{f_{\rm T}} )^2}} \hspace{0.05cm}, \hspace{0.3cm} {\rm Phase} = {\rm arctan}\hspace{0.1cm}({3f_{\rm N}}/{f_{\rm T}}) \hspace{0.05cm}.$$
Mit $f_N/f_T = 0.1$ erhält man den Betrag 0.958 und die Phase 16.7°. Damit lautet das Sinkensignal:
$$v(t) = 0.958 \cdot 2\,{\rm V}\cdot \cos (\omega_{\rm N}\cdot t + 16.7^\circ)$$
$$\Rightarrow \hspace{0.3cm} v(t=0)= 1.916\,{\rm V}\cdot \cos ( 16.7^\circ)\hspace{0.15cm}\underline { = 1.835\,{\rm V}}\hspace{0.05cm}.$$