Difference between revisions of "Applets:Dämpfung von Kupferkabeln"
David.Jobst (talk | contribs) |
David.Jobst (talk | contribs) |
||
Line 23: | Line 23: | ||
*Der Gesamtfrequenzgang H(f) ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor r, wobei stets B=f2 und r=f2−f1f2+f1 gelten soll. | *Der Gesamtfrequenzgang H(f) ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor r, wobei stets B=f2 und r=f2−f1f2+f1 gelten soll. | ||
*Ohne Berücksichtigung des Sendespektrums gilt H(f)=HK(f)⋅HE(f)⇒HE(f)=H(f)HK(f). | *Ohne Berücksichtigung des Sendespektrums gilt H(f)=HK(f)⋅HE(f)⇒HE(f)=H(f)HK(f). | ||
− | *Der angegebene Integralwert $=\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 | + | *Der angegebene Integralwert $=\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f ist ein Maß für die Rauschleistung des Systems, wenn der Kanal H_K(f) durch das Empfangsfilter H_E(f) in weiten Bereichen bis f_1$ vollständig entzerrt wird: |
Revision as of 10:44, 14 September 2017
Dämpfung von Kupferkabeln
<applet>
Theoretischer Hintergrund
- Die Dämpfungsfunktion eines Koaxialkabels wird meist in folgender Form angegeben:
a_k(f)=(a_0+a_1\cdot f+a_2\cdot f^{\frac{1}{2}})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{Betragsfrequenzgang} \left| H_K(f)\right|=10^{-a_K(f)/20}.
- a_K(f) ist direkt proportional zur Leitungslänge l.
- Der Koeffizient a_0 beschreibt die Ohmschen Längenverluste.
- Der Koeffizient a_1 beschreibt die Querverluste.
- Der Koeffizient a_2 beschreibt den Skineffekt; dieser ist sehr dominant.
- In der Literatur findet man folgende Dämpfungsfunktion einer Zweidrahtleitung:
a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski & Wellhausen.}
- Umrechnung der k-Parameter in die a-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite B minimal sein soll:
a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.
- Kontrolle: k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.
- Der Gesamtfrequenzgang H(f) ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor r, wobei stets B=f_2 und r=\frac{f_2-f_1}{f_2+f_1} gelten soll.
- Ohne Berücksichtigung des Sendespektrums gilt H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}.
- Der angegebene Integralwert =\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f ist ein Maß für die Rauschleistung des Systems, wenn der Kanal H_K(f) durch das Empfangsfilter H_E(f) in weiten Bereichen bis f_1 vollständig entzerrt wird:
Vorgeschlagene Parametersätze
1. Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=20, a_1=0, a_2=0:
Konstante Werte a_K=20 dB und \left| H_K(f)\right|=0.1. Nur Ohmsche Verluste werden berücksichtigt.
2. Parameter wie (1), aber zusätzlich a_1=1 dB/(km · MHz):
Linearer Anstieg von a_K(f) zwischen 20 dB und 50 dB, \left| H_K(f)\right| fällt beidseitig exponentiell ab.
3. Parameter wie (1), aber a_0=0, a_1=0, a_2=1 dB/(km · MHz1/2).
a_K(f) und \left| H_K(f)\right| werden ausschließlich durch den Skineffekt bestimmt. a_K(f) ist proportional zu f^{1/2}.
4. Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):
Es überwiegt der Skineffekt; a_k (f=30 MHz)=13.05 dB; ohne a_0: 13.04 dB, ohne a_1=12.92 dB.
5. Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 1.2/4.4 mm“ (Kleinkoaxialkabel):
Wieder überwiegt der Skineffekt; a_k (f=30 MHz)=28.66 dB; ohne a_0: 28.59 dB, ohne a_1=28.48 dB.
6. Nur roter Parametersatz, l=1 km, b=30 MHz, r=0, Einstellung „Zweidrahtleitung 0.4 mm“.
Skineffekt ist auch hier dominant; a_k (f=30 MHz)=111.4 dB; ohne k_1: 106.3 dB.
7. Parameter wie (6), aber nun Halbierung der Kabellänge (l=0.5 km):
Auch die Dämpfungswerte werden halbiert: a_k (f=30 MHz)=55.7 dB; ohne k_1: 53.2 dB.
8. Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:
Sehr gute Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.4 dB.
9. Parameter wie (8), aber nun Approximation auf die Bandbreite B=20 MHz:
Noch bessere Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.15 dB.
10. Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=a_1=a_2=0; unten Darstellung \left| H_K(f)\right|^2:
Im gesamten Bereich ist \left| H_K(f)\right|^2=1; der Integralwert ist somit 2B=60 (in MHz).
11. Parameter wie (10), aber nun mit Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):
\left| H_K(f)\right|^2 ist bei f=1 etwa 1 und steigt zu den Rändern bis ca. 20. Der Integralwert ist ca. 550.
12. Parameter wie (11), aber nun mit der deutlich größeren Kabellänge l=5 km:
Deutliche Verstärkung des Effekts; Anstieg bis ca. 3.35\cdot 10^6 am Rand und Integralwert 2.5\cdot 10^7.
13. Parameter wie (12), aber nun mit Rolloff-Faktor r=0.5:
Deutliche Abschwächung des Effekts; Anstieg bis ca. 5.25\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.07\cdot 10^6.
14. Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste (a_0=0):
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. 5.15\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.05\cdot 10^6.
15. Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste (a_1=0):
Ebenfalls kein großer Unterschied; Anstieg bis ca. 4.74\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 0.97\cdot 10^6.
16. Nur roter Parametersatz, l=1 km, B=30 MHz, r=0.5, Einstellung „Zweidrahtleitung 0.4 mm“:
Anstieg bis ca. 3\cdot 10^8 (f ca. 23 MHz), Integralwert ca. 4.55\cdot 10^9; ohne k_1: 0.93\cdot 10^8 (f ca. 23 MHz) bzw. 1.41\cdot 10^9.