Difference between revisions of "Applets:Periodendauer periodischer Signale"

From LNTwww
Line 35: Line 35:
  
  
 
+
<body onload="drawNow()">
 
<!-- Resetbutton, Checkbox und Formel -->
 
<!-- Resetbutton, Checkbox und Formel -->
 
<p>
 
<p>
Line 43: Line 43:
 
<div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:170px 20px 0px 0px;"></div>
 
<div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:170px 20px 0px 0px;"></div>
 
<div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; margin:-760px 20px 0px 0px;"></div>
 
<div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; margin:-760px 20px 0px 0px;"></div>
 
+
<div id="outBoxHtml" class="jxgbox" style="width:600px; height:100px; margin:625px 20px 0px 0px;"></div>
  
 
<script type="text/javascript">
 
<script type="text/javascript">
 +
function drawNow() {
 +
//Grundeinstellungen der beiden Applets
 +
JXG.Options.text.useMathJax = true;
 +
var plotBox = JXG.JSXGraph.initBoard('plotBoxHtml', {showCopyright:false, axis:false, zoom:{factorX:1.1, factorY:1.1, wheel:true, needshift:true, eps: 0.1}, grid:false, boundingbox: [-0.5, 2.2, 12.4, -2.2]});
 +
var cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]});
 +
var outBox = JXG.JSXGraph.initBoard('outBoxHtml', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]});
 +
cnfBox.addChild(plotBox);
 +
cnfBox.addChild(outBox);
  
    // Grundeinstellungen der beiden Applets
+
//Einstellungen der Achsen
    JXG.Options.text.useMathJax = true;
+
xaxis = plotBox.create('axis', [[0, 0], [1,0]], {name:'\\[t/T\\]', withLabel:true, label:{position:'rt', offset:[-25, 15]}});
  var  cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', {
+
yaxis = plotBox.create('axis', [[0, 0], [0, 1]], {name:'\\[x(t)\\]', withLabel:true, label:{position:'rt', offset:[10, -5]}});
        showCopyright: false, showNavigation: false, axis: false,
 
        grid: false, zoom: { enabled: false }, pan: { enabled: false },
 
        boundingbox: [-1, 2.2, 12.4, -2.2]
 
    });
 
    var pltBox = JXG.JSXGraph.initBoard('pltBoxHtml', {
 
        showCopyright: false, axis: false,
 
        zoom: { factorX: 1.1, factorY: 1.1, wheel: true, needshift: true, eps: 0.1 },
 
        grid: false, boundingbox: [-0.5, 2.2, 12.4, -2.2]
 
    });
 
    cnfBox.addChild(pltBox);
 
  
    // Einstellungen der Achsen
+
//Festlegen der Schieberegler
    xaxis = pltBox.create('axis', [[0, 0], [1, 0]], {
+
a = cnfBox.create('slider',[[-0.7,1.5],[3,1.5],[0,0.5,1]], {withLabel:false, withTicks:false, snapWidth:0.01}),
        name: '$\\dfrac{t}{T}$',
+
b = cnfBox.create('slider',[[-0.7,0.5],[3,0.5],[0,1,10]], {withLabel:false, withTicks:false, snapWidth:0.1}),
        withLabel: true, label: { position: 'rt', offset: [-25, -10] }
+
c = cnfBox.create('slider',[[-0.7,-0.5],[3,-0.5],[-180,0,180]], {withLabel:false, withTicks:false, snapWidth:5}),
    });
+
d = cnfBox.create('slider',[[6,1.5],[9.7,1.5],[0,0.5,1]], {withLabel:false, withTicks:false, snapWidth:0.01}),
    yaxis = pltBox.create('axis', [[0, 0], [0, 1]], {
+
e = cnfBox.create('slider',[[6,0.5],[9.7,0.5],[0,2,10]], {withLabel:false, withTicks:false, snapWidth:0.1}),
        name: '$x(t)$',
+
g = cnfBox.create('slider',[[6,-0.5],[9.7,-0.5],[-180,90,180]], {withLabel:false, withTicks:false, snapWidth:5}),
        withLabel: true, label: { position: 'rt', offset: [10, -5] }
+
t = cnfBox.create('slider',[[-0.7,-1.5],[3,-1.5],[0,0,10]], {withLabel:false, withTicks:false, snapWidth:0.2}),
    });
 
  
    // Erstellen der Schieberegler
 
    sldA1 = cnfBox.create('slider', [ [-0.7, 1.5], [3, 1.5], [0, 0.5, 1] ], {
 
        suffixlabel: '$A_1=$',
 
        unitLabel: 'V', snapWidth: 0.01
 
        }),
 
    sldF1 = cnfBox.create('slider', [ [-0.7, 0.5], [3, 0.5], [0, 1, 10] ], {
 
        suffixlabel: '$f_1=$',
 
        unitLabel: 'kHz', snapWidth: 0.1
 
    }),
 
    sldPHI1 = cnfBox.create('slider', [ [-0.7, -0.5], [3, -0.5], [-180, 0, 180] ], {
 
        suffixlabel: '$\\phi_1=$',
 
        unitLabel: 'Grad', snapWidth: 5
 
    }),
 
    sldA2 = cnfBox.create('slider', [ [6, 1.5], [9.7, 1.5], [0, 0.5, 1] ], {
 
        suffixlabel: '$A_2=$',
 
        unitLabel: 'V', snapWidth: 0.01
 
    }),
 
    sldF2 = cnfBox.create('slider', [ [6, 0.5], [9.7, 0.5], [0, 2, 10] ], {
 
        suffixlabel: '$f_2=$',
 
        unitLabel: 'kHz', snapWidth: 0.1
 
    }),
 
    sldPHI2 = cnfBox.create('slider', [ [6, -0.5], [9.7, -0.5], [-180, 90, 180] ], {
 
        suffixlabel: '$\\phi_2=$',
 
        unitLabel: 'Grad', snapWidth: 5
 
    }),
 
    sldT = cnfBox.create('slider', [ [-0.7, -1.5], [3, -1.5], [0, 0, 10] ], {
 
        suffixlabel: '$t=$',
 
        unitLabel: 's', snapWidth: 0.2
 
    }),
 
  
    // Definition der Funktion
+
//Definition der Ausgabefelder
    signaldarstellung = pltBox.create('functiongraph', [function(x) {
+
texta=cnfBox.create('text',[2.8,1.87, function()
        return (sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * x - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * x - 2 * Math.PI * sldPHI2.Value() / 360))
+
  { return '\\[A_1= '+ Math.round(a.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14});
    }], {
+
textb=cnfBox.create('text',[2.8,0.87, function()
        strokeColor: "red"
+
  { return '\\[f_1= '+ Math.round(b.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14});
    });
+
textc=cnfBox.create('text',[2.8,-0.13, function()
 +
  { return '\\[\\phi_1= '+ Math.round(c.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true, fontSize:14});
 +
textd=cnfBox.create('text',[9.5,1.67, function()
 +
  { return '\\[A_2= '+ Math.round(d.Value()*100)/100 +' \\text{ V}\\]';}], {fixed:true, visible:true, fontSize:14});
 +
texte=cnfBox.create('text',[9.5,0.67, function()
 +
  { return '\\[f_2= '+ Math.round(e.Value()*100)/100 +' \\text{ kHz}\\]';}], {fixed:true, visible:true, fontSize:14});
 +
textg=cnfBox.create('text',[9.5,-0.33, function()
 +
  { return '\\[\\phi_2= '+ Math.round(g.Value()*100)/100 +' \\text{ Grad}\\]';}], {fixed:true, visible:true, fontSize:14});
 +
textt=cnfBox.create('text',[2.8,-1.2, function()
 +
  { return '\\[t= '+ Math.round(t.Value()*100)/100 +' \\]';}], {fixed:true, visible:true, fontSize:14});
  
    // Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0
+
textergebnis1=outBox.create('text',[-1,1.5, function()
    p_T0 = pltBox.create('point', [
+
  { return '\\[x(t)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*t.Value()-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*t.Value()-2*Math.PI*g.Value()/360))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
        function() {
+
textergebnis2=outBox.create('text',[1.5,1.5, function()
            return (Math.round(getT0() * 100) / 100);
+
  { return '\\[x(t+T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
        },
+
textergebnis3=outBox.create('text',[5,1.5, function()
        function() {
+
  { return '\\[x(t+2T_0)= '+ Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-c.Value())+d.Value()*Math.cos(2*Math.PI*e.Value()*(t.Value()+2*Math.round(getT0() *1000)/1000)-g.Value()))*1000)/1000 +' \\]';}], {fixed:true, visible:true, fontSize:14});
            return sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI1.Value() / 360) +
+
textergebnis4=outBox.create('text',[8.5,1.5, function()
                sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI2.Value() / 360);
+
{var x = new Array(50000);
        }],
+
for (var i = 0; i < 50001; i++) {x[i] = Math.round((a.Value()*Math.cos(2*Math.PI*b.Value()*(i/1000)-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*(i/1000)-2*Math.PI*g.Value()/360)) *1000)/1000;};
        { color: "blue", fixed: true, label: false, size: 1, name: '' }
+
return '\\[x_{max}= '+ Math.max.apply(Math,x)+' \\]';}], {fixed:true, visible:true, fontSize:14});
    );
+
textergebnis5=outBox.create('text',[10.8,1.5, function()
    p_T0h = pltBox.create('point',
+
  { return '\\[T_0= '+ Math.round(getT0() *100)/100 +' \\]';}], {fixed:true, visible:true, strokeColor:'blue', fontSize:14});
        [function() { return (Math.round(getT0() * 100) / 100); }, 2],
 
        { visible: false, color: "blue", fixed: true, label: false, size: 1, name: '' }
 
    );
 
    l_T0 = pltBox.create('line', [p_T0, p_T0h])
 
  
    // Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
+
//Definition der Funktion
    setInterval(function() {
+
signaldarstellung = plotBox.create('functiongraph',[function(x){
         document.getElementById("T_0").innerHTML = Math.round(getT0() * 100) / 100;
+
         return (a.Value()*Math.cos(2*Math.PI*b.Value()*x-2*Math.PI*c.Value()/360)+d.Value()*Math.cos(2*Math.PI*e.Value()*x-2*Math.PI*g.Value()/360))
     }, 50);
+
     }], {strokeColor: "red"});
  
 +
//Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0
 +
p_T0=plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;},
 +
      function(){ return a.Value()*Math.cos(2*Math.PI*b.Value()*(Math.round(getT0() *100)/100)-2*Math.PI*c.Value()/360)
 +
        +d.Value()*Math.cos(2*Math.PI*e.Value()*(Math.round(getT0() *100)/100)-2*Math.PI*g.Value()/360);}], {color:"blue", fixed:true, label:false, size:1, name:''})
 +
p_T0h = plotBox.create('point', [function(){ return Math.round(getT0() *100)/100;}, 2], {visible: false, color:"blue", fixed:true, label:false, size:1, name:''})
 +
l_T0 = plotBox.create('line', [p_T0, p_T0h])
 +
};
  
 
//Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
 
//Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
 +
    function getT0() {
  
 
 
    function isInt(n) {
 
        return n % 1 === 0;
 
    }
 
 
    function getT0() {
 
 
         var A, B, C, Q;
 
         var A, B, C, Q;
         if (sldF1.Value() < sldF2.Value()) {
+
         if (b.Value() < e.Value()) {
             A = sldF1.Value();
+
             A = b.Value();
             B = sldF2.Value();
+
             B = e.Value();
 
         } else {
 
         } else {
             B = sldF1.Value();
+
             B = b.Value();
             A = sldF2.Value();
+
             A = e.Value();
 
         }
 
         }
         // console.log('Berechne T0 mit A=' + A, 'B=' + B);
+
 
 +
         console.log('Berechne T0 mit A=' + A, 'B=' + B);
 +
 
 
         for (var x = 1; x <= 100; x++) {
 
         for (var x = 1; x <= 100; x++) {
 
             C = A / x;
 
             C = A / x;
 
             Q = B / C;
 
             Q = B / C;
             // console.log(x + '. Durchgang: C = ' + C, 'Q = ' + Q);
+
             console.log(x + '. Durchgang: C = ' + C, 'Q = ' + Q);
 
             if (isInt(Q)) {
 
             if (isInt(Q)) {
                 // console.log('Q ist eine Ganzzahl!!! T0 ist damit ', 1 / C);
+
                 console.log('Q ist eine Qanzzahl!!! T0 ist damit ', 1 / C);
 
                 return 1 / C;
 
                 return 1 / C;
 
             }
 
             }
Line 160: Line 136:
 
                 return 10;
 
                 return 10;
 
             }
 
             }
             if ((1 / C) > 10)
+
             if ((1/C) > 10)
 
                 return 10
 
                 return 10
 
         }
 
         }
 
     }
 
     }
  
 +
    function isInt(n) {
 +
        return n % 1 === 0;
 +
    }
  
 
    // Ausgabe des Wertes x(t)
 
    setInterval(function() {
 
        document.getElementById("x(t)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * sldT.Value() - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * sldT.Value() - 2 * Math.PI * sldPHI2.Value() /
 
            360)) * 1000) / 1000;
 
    }, 50);
 
 
    // Ausgabe des Wertes x(t+T_0)
 
    setInterval(function() {
 
        document.getElementById("x(t+T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
 
            Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
 
    }, 50);
 
 
    // Ausgabe des Wertes x(t+2T_0)
 
    setInterval(function() {
 
        document.getElementById("x(t+2T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + 2 * Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
 
            2 * Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
 
    }, 50);
 
 
    // Ausgabe des Wertes x_max
 
    setInterval(function() {
 
        var x = new Array(50000);
 
        for (var i = 0; i < 50001; i++) {
 
            x[i] = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (i / 1000) - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (i / 1000) - 2 * Math.PI * sldPHI2.Value() / 360)) * 1000) / 1000;
 
        }
 
        document.getElementById("x_max").innerHTML = Math.max.apply(Math, x);
 
    }, 50);
 
  
  

Revision as of 08:38, 18 September 2017

Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$