Difference between revisions of "Applets:Periodendauer periodischer Signale"
From LNTwww
David.Jobst (talk | contribs) |
David.Jobst (talk | contribs) |
||
Line 43: | Line 43: | ||
<div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:170px 20px 0px 0px;"></div> | <div id="plotBoxHtml" class="jxgbox" style="width:600px; height:600px; border:1px solid black; margin:170px 20px 0px 0px;"></div> | ||
<div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; margin:-760px 20px 0px 0px;"></div> | <div id="cnfBoxHtml" class="jxgbox" style="width:600px; height:150px; margin:-760px 20px 0px 0px;"></div> | ||
− | + | ||
<script type="text/javascript"> | <script type="text/javascript"> | ||
function drawNow() { | function drawNow() { | ||
− | //Grundeinstellungen der beiden Applets | + | // Grundeinstellungen der beiden Applets |
− | JXG.Options.text.useMathJax = true; | + | JXG.Options.text.useMathJax = true; |
− | + | cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', { | |
− | cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', {showCopyright:false, showNavigation:false, axis:false, grid:false, zoom:{enabled:false}, pan:{enabled:false}, boundingbox: [-1, 2.2, 12.4, -2.2]}); | + | showCopyright: false, showNavigation: false, axis: false, |
− | + | grid: false, zoom: { enabled: false }, pan: { enabled: false }, | |
− | cnfBox.addChild( | + | boundingbox: [-1, 2.2, 12.4, -2.2] |
− | + | }); | |
− | + | pltBox = JXG.JSXGraph.initBoard('pltBoxHtml', { | |
− | + | showCopyright: false, axis: false, | |
− | + | zoom: { factorX: 1.1, factorY: 1.1, wheel: true, needshift: true, eps: 0.1 }, | |
− | + | grid: false, boundingbox: [-0.5, 2.2, 12.4, -2.2] | |
+ | }); | ||
+ | cnfBox.addChild(pltBox); | ||
− | // | + | // Einstellungen der Achsen |
− | + | xaxis = pltBox.create('axis', [[0, 0], [1, 0]], { | |
− | + | name: '$\\dfrac{t}{T}$', | |
− | + | withLabel: true, label: { position: 'rt', offset: [-25, -10] } | |
− | + | }); | |
− | + | yaxis = pltBox.create('axis', [[0, 0], [0, 1]], { | |
− | + | name: '$x(t)$', | |
− | + | withLabel: true, label: { position: 'rt', offset: [10, -5] } | |
+ | }); | ||
− | // | + | // Erstellen der Schieberegler |
− | + | sldA1 = cnfBox.create('slider', [ [-0.7, 1.5], [3, 1.5], [0, 0.5, 1] ], { | |
− | + | suffixlabel: '$A_1=$', | |
− | + | unitLabel: 'V', snapWidth: 0.01 | |
− | + | }), | |
− | + | sldF1 = cnfBox.create('slider', [ [-0.7, 0.5], [3, 0.5], [0, 1, 10] ], { | |
− | + | suffixlabel: '$f_1=$', | |
− | + | unitLabel: 'kHz', snapWidth: 0.1 | |
− | + | }), | |
− | + | sldPHI1 = cnfBox.create('slider', [ [-0.7, -0.5], [3, -0.5], [-180, 0, 180] ], { | |
− | + | suffixlabel: '$\\phi_1=$', | |
− | + | unitLabel: 'Grad', snapWidth: 5 | |
− | + | }), | |
− | + | sldA2 = cnfBox.create('slider', [ [6, 1.5], [9.7, 1.5], [0, 0.5, 1] ], { | |
− | + | suffixlabel: '$A_2=$', | |
+ | unitLabel: 'V', snapWidth: 0.01 | ||
+ | }), | ||
+ | sldF2 = cnfBox.create('slider', [ [6, 0.5], [9.7, 0.5], [0, 2, 10] ], { | ||
+ | suffixlabel: '$f_2=$', | ||
+ | unitLabel: 'kHz', snapWidth: 0.1 | ||
+ | }), | ||
+ | sldPHI2 = cnfBox.create('slider', [ [6, -0.5], [9.7, -0.5], [-180, 90, 180] ], { | ||
+ | suffixlabel: '$\\phi_2=$', | ||
+ | unitLabel: 'Grad', snapWidth: 5 | ||
+ | }), | ||
+ | sldT = cnfBox.create('slider', [ [-0.7, -1.5], [3, -1.5], [0, 0, 10] ], { | ||
+ | suffixlabel: '$t=$', | ||
+ | unitLabel: 's', snapWidth: 0.2 | ||
+ | }), | ||
− | + | // Definition der Funktion | |
− | + | signaldarstellung = pltBox.create('functiongraph', [function(x) { | |
− | + | return (sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * x - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * x - 2 * Math.PI * sldPHI2.Value() / 360)) | |
− | + | }], { | |
− | + | strokeColor: "red" | |
− | + | }); | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | //Definition der | + | // Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0 |
− | + | p_T0 = pltBox.create('point', [ | |
− | return | + | function() { |
− | }], { | + | return (Math.round(getT0() * 100) / 100); |
+ | }, | ||
+ | function() { | ||
+ | return sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI1.Value() / 360) + | ||
+ | sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI2.Value() / 360); | ||
+ | }], | ||
+ | { color: "blue", fixed: true, label: false, size: 1, name: '' } | ||
+ | ); | ||
+ | p_T0h = pltBox.create('point', | ||
+ | [function() { return (Math.round(getT0() * 100) / 100); }, 2], | ||
+ | { visible: false, color: "blue", fixed: true, label: false, size: 1, name: '' } | ||
+ | ); | ||
+ | l_T0 = pltBox.create('line', [p_T0, p_T0h]) | ||
− | // | + | // Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth |
− | + | setInterval(function() { | |
− | + | document.getElementById("T_0").innerHTML = Math.round(getT0() * 100) / 100; | |
− | + | }, 50); | |
− | |||
− | |||
}; | }; |
Revision as of 08:47, 18 September 2017
Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$