Difference between revisions of "Applets:Periodendauer periodischer Signale"

From LNTwww
Line 1: Line 1:
 
+
<p>
 +
{{BlaueBox|TEXT=
 +
<B style="font-size:18px">Funktion:</B>
 +
$$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$
 +
}}
 +
</p>
  
 
<html>
 
<html>
Line 26: Line 31:
 
</head>
 
</head>
  
<body onload="drawNow()">
+
<body>
 
<!-- Resetbutton, Checkbox und Formel -->
 
<!-- Resetbutton, Checkbox und Formel -->
 
<p>
 
<p>
Line 49: Line 54:
  
 
<script type="text/javascript">
 
<script type="text/javascript">
function drawNow() {
+
 
 
         // Grundeinstellungen der beiden Applets
 
         // Grundeinstellungen der beiden Applets
 
         JXG.Options.text.useMathJax = true;
 
         JXG.Options.text.useMathJax = true;
Line 62: Line 67:
 
             grid: false, boundingbox: [-0.5, 2.2, 12.4, -2.2]
 
             grid: false, boundingbox: [-0.5, 2.2, 12.4, -2.2]
 
         });
 
         });
        cnfBox.addChild(pltBox);
+
 
        // Einstellungen der Achsen
+
    // Definition der Funktion zum An- und Ausschalten des Koordinatengitters
        xaxis = pltBox.create('axis', [[0, 0], [1, 0]], {
+
    function showgrid() {
            name: '$\\dfrac{t}{T}$',
+
         if (gridbox.checked) {
            withLabel: true, label: { position: 'rt', offset: [-25, -10] }
+
             xaxis = pltBox.create('axis', [ [0, 0], [1, 0] ], {});
        });
+
             yaxis = pltBox.create('axis', [ [0, 0], [0, 1] ], {});
        yaxis = pltBox.create('axis', [[0, 0], [0, 1]], {
+
         } else {
            name: '$x(t)$',
+
             xaxis.removeTicks(xaxis.defaultTicks);
            withLabel: true, label: { position: 'rt', offset: [10, -5] }
+
             yaxis.removeTicks(yaxis.defaultTicks);
         });
 
        // Erstellen der Schieberegler
 
        sldA1 = cnfBox.create('slider', [ [-0.7, 1.5], [3, 1.5], [0, 0.5, 1] ], {
 
            suffixlabel: '$A_1=$',
 
            unitLabel: 'V', snapWidth: 0.01
 
            }),
 
        sldF1 = cnfBox.create('slider', [ [-0.7, 0.5], [3, 0.5], [0, 1, 10] ], {
 
             suffixlabel: '$f_1=$',
 
            unitLabel: 'kHz', snapWidth: 0.1
 
        }),
 
        sldPHI1 = cnfBox.create('slider', [ [-0.7, -0.5], [3, -0.5], [-180, 0, 180] ], {
 
            suffixlabel: '$\\phi_1=$',
 
            unitLabel: 'Grad', snapWidth: 5
 
        }),
 
        sldA2 = cnfBox.create('slider', [ [6, 1.5], [9.7, 1.5], [0, 0.5, 1] ], {
 
            suffixlabel: '$A_2=$',
 
            unitLabel: 'V', snapWidth: 0.01
 
        }),
 
        sldF2 = cnfBox.create('slider', [ [6, 0.5], [9.7, 0.5], [0, 2, 10] ], {
 
             suffixlabel: '$f_2=$',
 
            unitLabel: 'kHz', snapWidth: 0.1
 
        }),
 
        sldPHI2 = cnfBox.create('slider', [ [6, -0.5], [9.7, -0.5], [-180, 90, 180] ], {
 
            suffixlabel: '$\\phi_2=$',
 
            unitLabel: 'Grad', snapWidth: 5
 
        }),
 
        sldT = cnfBox.create('slider', [ [-0.7, -1.5], [3, -1.5], [0, 0, 10] ], {
 
            suffixlabel: '$t=$',
 
            unitLabel: 's', snapWidth: 0.2
 
        }),
 
        // Definition der Funktion
 
        signaldarstellung = pltBox.create('functiongraph', [function(x) {
 
            return (sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * x - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * x - 2 * Math.PI * sldPHI2.Value() / 360))
 
        }], {
 
            strokeColor: "red"
 
        });
 
         // Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0
 
        p_T0 = pltBox.create('point', [
 
            function() {
 
                return (Math.round(getT0() * 100) / 100);
 
            },
 
            function() {
 
                return sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI1.Value() / 360) +
 
                    sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI2.Value() / 360);
 
             }],
 
            { color: "blue", fixed: true, label: false, size: 1, name: '' }
 
        );
 
        p_T0h = pltBox.create('point',
 
            [function() { return (Math.round(getT0() * 100) / 100); }, 2],
 
             { visible: false, color: "blue", fixed: true, label: false, size: 1, name: '' }
 
        );
 
        l_T0 = pltBox.create('line', [p_T0, p_T0h])
 
        // Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
 
        setInterval(function() {
 
            document.getElementById("T_0").innerHTML = Math.round(getT0() * 100) / 100;
 
          }, 50);
 
        function isInt(n) {
 
            return n % 1 === 0;
 
 
         }
 
         }
         function getT0() {
+
         pltBox.fullUpdate();
            var A, B, C, Q;
 
            if (sldF1.Value() < sldF2.Value()) {
 
                A = sldF1.Value();
 
                B = sldF2.Value();
 
            } else {
 
                B = sldF1.Value();
 
                A = sldF2.Value();
 
            }
 
            // console.log('Berechne T0 mit A=' + A, 'B=' + B);
 
            for (var x = 1; x <= 100; x++) {
 
                C = A / x;
 
                Q = B / C;
 
                // console.log(x + '. Durchgang: C = ' + C, 'Q = ' + Q);
 
                if (isInt(Q)) {
 
                    // console.log('Q ist eine Ganzzahl!!! T0 ist damit ', 1 / C);
 
                    return 1 / C;
 
                }
 
                if (x === 10) {
 
                    return 10;
 
                }
 
                if ((1 / C) > 10)
 
                    return 10
 
            }
 
        }
 
        // Ausgabe des Wertes x(t)
 
        setInterval(function() {
 
            document.getElementById("x(t)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * sldT.Value() - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * sldT.Value() - 2 * Math.PI * sldPHI2.Value() /
 
                360)) * 1000) / 1000;
 
        }, 50);
 
        // Ausgabe des Wertes x(t+T_0)
 
        setInterval(function() {
 
            document.getElementById("x(t+T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
 
                Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
 
        }, 50);
 
        // Ausgabe des Wertes x(t+2T_0)
 
        setInterval(function() {
 
            document.getElementById("x(t+2T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + 2 * Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
 
                2 * Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
 
        }, 50);
 
        // Ausgabe des Wertes x_max
 
        setInterval(function() {
 
            var x = new Array(50000);
 
            for (var i = 0; i < 50001; i++) {
 
                x[i] = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (i / 1000) - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (i / 1000) - 2 * Math.PI * sldPHI2.Value() / 360)) * 1000) / 1000;
 
            }
 
            document.getElementById("x_max").innerHTML = Math.max.apply(Math, x);
 
        }, 50);
 
 
     };
 
     };
 
 
</script>
 
</script>
 
</body>
 
</body>

Revision as of 21:59, 18 September 2017

Funktion: $$x(t) = A_1\cdot cos\Big(2\pi f_1\cdot t- \frac{2\pi}{360}\cdot \phi_1\Big)+A_2\cdot cos\Big(2\pi f_2\cdot t- \frac{2\pi}{360}\cdot \phi_2\Big)$$

$x(t)$= $\quad$ $x(t+ T_0)$= $\quad$ $x(t+2T_0)$= $\quad$ $x_{\text{max}}$= $\quad$ $T_0$= $\quad$