Difference between revisions of "Aufgaben:Exercise 1.1Z: Non-redundant Binary Source"

From LNTwww
Line 7: Line 7:
 
Eine jede digitale Quelle kann durch ihre Quellensymbolfolge
 
Eine jede digitale Quelle kann durch ihre Quellensymbolfolge
 
$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$
 
$$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$
vollständig beschrieben werden, wobei hier entgegen dem Theorieteil die Laufvariable $\nu$ mit 0 beginnt. Entstammt jedes einzelne Symbol===Fragebogen===
+
vollständig beschrieben werden, wobei hier entgegen dem Theorieteil die Laufvariable $\nu$ mit 0 beginnt. Entstammt jedes einzelne Symbol
 +
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>

Revision as of 21:48, 19 October 2017


P ID1257 Dig Z 1 1.png

Eine jede digitale Quelle kann durch ihre Quellensymbolfolge $$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$ vollständig beschrieben werden, wobei hier entgegen dem Theorieteil die Laufvariable $\nu$ mit 0 beginnt. Entstammt jedes einzelne Symbol

Fragebogen

1

{Wie groß ist der Symbolabstand?

$T$ =

$\mu s$

2

Handelt es sich hierbei um die unipolare oder bipolare Repräsentation?

Die Symbolfolge ist unipolar.
Die Symbolfolge ist bipolar.


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)