Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Aufgaben:Exercise 3.1: Impulse Response of the Coaxial Cable"

From LNTwww
Line 9: Line 9:
 
   {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l}  \cdot
 
   {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l}  \cdot
 
   \\ & \cdot & {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}
 
   \\ & \cdot & {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}
     \hspace{0.05cm}.
+
     \hspace{0.05cm}.$$
  
  

Revision as of 12:23, 23 October 2017

P ID1370 Dig A 3 1.png

Der Frequenzgang eines Koaxialkabels der Länge l ist durch folgende Formel darstellbar:

H_{\rm K}(f) & = &{\rm e}^{- \alpha_0 \hspace{0.05cm} \cdot \hspace{0.05cm} l}   \cdot \\ & \cdot &   {\rm e}^{- (\alpha_1 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1) \hspace{0.05cm}\cdot f \hspace{0.05cm}\cdot \hspace{0.05cm}l}  \cdot   \\ & \cdot & {\rm e}^{- (\alpha_2 + {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2) \hspace{0.05cm}\cdot \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l}     \hspace{0.05cm}.


Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

α =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)