Difference between revisions of "Aufgaben:Exercise 1.1Z: Non-redundant Binary Source"

From LNTwww
Line 28: Line 28:
 
{Wie groß ist die von der Quelle abgegebene Bitrate?
 
{Wie groß ist die von der Quelle abgegebene Bitrate?
 
|type="{}"}
 
|type="{}"}
$R$ = {500 3% } $\kbit/s$
+
$R$ = { 500 3% } $kbit/s$
  
 
{Handelt es sich hierbei um die unipolare oder bipolare Repräsentation?
 
{Handelt es sich hierbei um die unipolare oder bipolare Repräsentation?
Line 35: Line 35:
 
+ Die Symbolfolge ist bipolar.
 
+ Die Symbolfolge ist bipolar.
  
 +
{Wie lautet das Quellensymbol <i>q</i><sub>2</sub>?
 +
|type="[]"}
 +
+ <i>q</i><sub>2</sub> = <b>L</b>,
 +
- <i>q</i><sub>2</sub> = <b>H</b>.
 +
 +
{Wie groß ist die Symbolwahrscheinlichkeit <i>p</i><sub>H</sub> = Pr(<i>q<sub>&nu;</sub></i> = <b>H</b>)?
 +
|type="{}"}
 +
<i>p</i><sub>H</sub> = { 0.5 3% }
  
 
</quiz>
 
</quiz>

Revision as of 14:19, 23 October 2017


P ID1257 Dig Z 1 1.png

Eine jede digitale Quelle kann durch ihre Quellensymbolfolge $$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$ vollständig beschrieben werden, wobei hier entgegen dem Theorieteil die Laufvariable $\nu$ mit 0 beginnt. Entstammt jedes einzelne Symbol $q_\nu$ dem Symbolvorrat {L, H}, so spricht man von einer Binärquelle.

Unter Verwendung des Symbolabstandes $T$ kann man die Quellensymbolfolge $\langle q_\nu \rangle$ in äquivalenter Weise auch durch das diracförmige Quellensignal $$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)$$ kennzeichnen, was eher einer systemtheoretischen Betrachtungsweise entspricht. Hierbei bezeichnet man $a_\nu$ als die Amplitudenkoeffizienten. Im Falle einer binären unipolaren Digitalsignalübertragung gilt: $$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$ Entsprechend gilt bei einem bipolaren System: $$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$ In der Grafik ist das diracförmige Quellensignal $q(t)$ einer Binärquelle dargestellt. Von dieser ist bekannt, dass sie redundanzfrei ist. Diese Aussage ist für die Lösung der Aufgabe durchaus relevant.

Hinweis: Diese Aufgabe bezieht sich auf das Kapitel 1.1. In der Literatur werden die beiden möglichen Binärsymbole meist mit L und 0 bezeichnet. Um die etwas verwirrende Zuordnung aν = 1 für qν = 0 und aν = 0 für qν = L zu vermeiden, werden in unserem Lerntutorial die Symbole L („Low”) und H („High”) verwendet.

Fragebogen

1

Wie groß ist der Symbolabstand?

$T$ =

$\mu s$

2

Wie groß ist die von der Quelle abgegebene Bitrate?

$R$ =

$kbit/s$

3

Handelt es sich hierbei um die unipolare oder bipolare Repräsentation?

Die Symbolfolge ist unipolar.
Die Symbolfolge ist bipolar.

4

Wie lautet das Quellensymbol q2?

q2 = L,
q2 = H.

5

Wie groß ist die Symbolwahrscheinlichkeit pH = Pr(qν = H)?

pH =


Musterlösung

(1) Entsprechend der Grafik beträgt der Abstand zweier Symbole T = 2 μs.

(2) Bei einer redundanzfreien Binärquelle – und nur bei dieser – ist die Bitrate R = 1/T.

Demzufolge ergibt sich hier R = 500 kbit/s.

(3) Die möglichen Amplitudenkoeffizienten sind ±1. Deshalb ist die gegebene Symbolfolge bipolar.

(4)  (5)  (6)