Difference between revisions of "Aufgaben:Exercise 1.2: Bit Error Rate"
Line 36: | Line 36: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Was beschreibt BER im Sinne der Wahrscheinlichkeitsrechnung? | + | {Was beschreibt $\rm BER$ im Sinne der Wahrscheinlichkeitsrechnung? |
|type="[]"} | |type="[]"} | ||
− | - BER ist eine Wahrscheinlichkeit. | + | - $\rm BER$ ist eine Wahrscheinlichkeit. |
− | + BER ist eine relative Häufigkeit. | + | + $\rm BER$ ist eine relative Häufigkeit. |
− | - Wenn | + | - Wenn $N$ hinreichend groß ist, stimmt $\rm BER$ mit $p$ <b>exakt</b> überein. |
− | {Berechnen Sie die Streuung | + | {Berechnen Sie die Streuung $\sigma$ für $N = 10^6$ und $p = 10^{-2}$. |
|type="{}"} | |type="{}"} | ||
− | $p = 10^{-2}: | + | $p = 10^{-2}\text{:} \hspace{0.4cm}\sigma \ =\ $ { 1 3% } $\ \cdot 10^{ -4 }\ $ |
− | {Wie groß ist die Wahrscheinlichkeit, dass die Bitfehlerquote betragsmäßig um mehr als 5% von der Wahrscheinlichkeit | + | {Wie groß ist die Wahrscheinlichkeit, dass die Bitfehlerquote betragsmäßig um mehr als 5% von der Wahrscheinlichkeit $p = 10^{-2}$ abweicht? |
|type="{}"} | |type="{}"} | ||
− | $ p = 10^{-2}: | + | $p = 10^{-2}\text{:} \hspace{0.4cm}{\rm Pr}(|{\rm BER} – p| > 0.05 · p) \ =\ ${ 0.00574 10% } $\ \cdot 10^{ -4 }\ $ |
− | {Wie groß ist die gleiche Wahrscheinlichkeit mit | + | {Wie groß ist die gleiche Wahrscheinlichkeit mit $p = 10^{-4}$? |
|type="{}"} | |type="{}"} | ||
− | $p = 10^{-4}: | + | $p = 10^{-4}\text{:} \hspace{0.4cm}{\rm Pr}(|{\rm BER} – p| > 0.05 · p) \ =\ $ { 0.618 3% } |
− | {Wie groß müsste | + | {Wie groß müsste $N$ mindestens sein, damit bei $p = 10^{-4}$ nicht mehr als $10\%$ außerhalb des Intervalls von $0.95 \cdot 10^{-4}$ ... $1.05 \cdot 10^{-4}$ liegen? |
|type="{}"} | |type="{}"} | ||
− | $ p = 10^{-4}: | + | $p = 10^{-4}\text{:} \hspace{0.4cm}N_{\rm min} \ =\ $ { 10.8 10% } $\ \cdot 10^{ 6 }\ $ |
Revision as of 17:01, 25 October 2017
Von einem digitalen Übertragungssystem ist bekannt, dass es durch ein BSC–Modell (Binary Symmetrical Channel) mit Fehlerwahrscheinlichkeit $p$ angenähert werden kann.
Zur Verifizierung soll die Bitfehlerquote ermittelt werden, indem man die Sinkensymbolfolge $ \langle v_\nu \rangle $ mit der Quellensymbolfolge $ \langle q_\nu \rangle $ vergleicht und daraus die Fehlerfolge $ \langle e_\nu \rangle $ ermittelt. Dabei gilt:
$$e_\nu = \left\{ \begin{array}{c} 0 \\ 1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} v_\nu = q_\nu \hspace{0.05cm}, \\ v_\nu \ne q_\nu . \\ \end{array}$$ Die Bitfehlerquote (englisch: Bit Error Rate) ist eine Näherung für die Bitfehlerwahrscheinlichkeit $p$:
- $${\rm BER} = \frac{1}{N}\cdot\sum_{\nu=1}^N e_\nu.$$
Je größer der Simulationsparameter $N$ gewählt wird, um so genauer ist diese Näherung.
Aus der Aufgabe 3.7 im Buch „Stochastische Signaltheorie” ist bekannt, dass die Zufallsgröße „BER” eigentlich binominalverteilt ist, aber mit guter Näherung durch eine (diskrete) Gaußverteilung mit dem Mittelwert $p$ und der Streuung $\sigma$ angenähert werden kann:
- $$\sigma = \sqrt{\frac{ p\cdot (\rm 1- \it p)}{N}}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit bei Basisbandübertragung.
- Bezug genommen wird auch auf das Kapitel Gaußverteilte Zufallsgrößen im Buch „Stochastische Signaltheorie”.
- In der Tabelle sind einige Werte der Gaußschen Fehlerfunktionen $\rm \phi(x)$ und $\rm Q(x)$ angegeben.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Die Streuung der Gaußschen Zufallsgröße BER ergibt sich mit p = 10–2 und N = 106 zu $$\sigma = \sqrt{{ p\cdot (\rm 1- \it p)}/{N}}\approx \sqrt{{ p}/{N}}\hspace{0.1cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$ (3) Die Wahrscheinlichkeit, dass die Bitfehlerrate (kurz BER) einen Wert außerhalb des Bereichs von 0.95 · p und 1.05 · p annimmt, kann mit ε = 5 · 10–4 (wegen p = 0.01) wie folgt berechnet werden: $${\rm Pr} \left( {\rm BER} < 0.95 \cdot 10^{-2} \right) = {\rm Pr} \left( {\rm BER} > 1.05 \cdot 10^{-2} \right) = {\rm Q} \left({\varepsilon}/{\sigma} \right)$$ $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - p| > \varepsilon \right) = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-4}}{10^{-4}} \right) = 2 \cdot 0.287 \cdot 10^{-6}\hspace{0.1cm}\underline {= 0.574 \cdot 10^{-6}}\hspace{0.05cm}.$$
(4) Mit p = 10–4 gilt für die vergleichbare Wahrscheinlichkeit: $${\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) = 2 \cdot {\rm Q} \left( {\varepsilon}/{\sigma} \right)\hspace{0.05cm}.$$ $$\sigma \approx \sqrt{{ p}/{N}}= 10^{-5}\hspace{0.05cm}, \hspace{0.3cm}\varepsilon = 5 \cdot 10^{-6}:$$ $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-6}}{10^{-5}} \right) = 2 \cdot 0.309 \hspace{0.1cm}\underline {= 0.618} \hspace{0.05cm}.$$
(5) Diese Bedingung lässt sich mit ε = 5 · 10–6 wie folgt formulieren: $${\rm Q} \left( {\varepsilon}/{\sigma} \right) < 0.1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\varepsilon}/{\sigma} > {\rm Q}^{-1}(0.05) \approx 1.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\varepsilon^2}{\sigma^2}\approx \frac{\varepsilon^2 \cdot N}{p}> 1.64^2 = 2.69$$ $$\Rightarrow \hspace{0.3cm} N > \frac{2.69 \cdot p}{\varepsilon^2}= \frac{2.69 \cdot 10^{-4}}{25 \cdot10^{-12}}\hspace{0.1cm}\underline {\approx 1.08 \cdot 10^{7}} = 10.8 \, {\rm Millionen}\hspace{0.05cm}.$$