Difference between revisions of "Aufgaben:Exercise 1.2: Bit Error Rate"

From LNTwww
Line 64: Line 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;BER ist als Quotient aus der Anzahl <i>n</i><sub>B</sub> der festgestellten Symbolfehler und der Anzahl <i>N</i> aller simulierten Symbole und damit tatsächlich als relative Häufigkeit definiert. Die Wahrscheinlichkeit, dass BER = <i>p</i> gilt, ist stets genau 0, da BER eine kontinuierliche Zufallsgröße darstellt. Allerdings wird die Wahrscheinlichkeit, dass BER in einem schmalen Intervall um <i>p</i> liegt, mit steigendem <i>N</i> immer größer. Trotzdem gilt: Richtig ist <u>nur die zweite Aussage</u>.
+
'''(1)'''&nbsp; Richtig ist <u>nur die zweite Aussage</u>:
 +
*$\rm BER$ ist als Quotient aus der Anzahl $n_{\rm B}$ der festgestellten Symbolfehler und der Anzahl $N$ aller simulierten Symbole und damit tatsächlich als relative Häufigkeit definiert.  
 +
*Die Wahrscheinlichkeit, dass $\rm BER = p$ gilt, ist stets genau 0, da $\rm BER$ eine kontinuierliche Zufallsgröße darstellt.  
 +
*Allerdings wird die Wahrscheinlichkeit, dass $\rm BER$ in einem schmalen Intervall um $p$ liegt, mit steigendem $N$ immer größer.  
 +
 
 +
 
 +
'''(2)'''&nbsp;Die Streuung der Gaußschen Zufallsgröße $\rm BER$ ergibt sich mit $N = 10^6$ und $p = 10^{-2}$ zu
 +
:$$\sigma =  \sqrt{{ p\cdot (\rm 1- \it p)}/{N}}\approx \sqrt{{ p}/{N}}\hspace{0.1cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$
  
'''(2)'''&nbsp;Die Streuung der Gaußschen Zufallsgröße BER ergibt sich mit <i>p</i> = 10<sup>&ndash;2</sup> und <i>N</i> = 10<sup>6</sup> zu
 
$$\sigma =  \sqrt{{ p\cdot (\rm 1- \it p)}/{N}}\approx \sqrt{{ p}/{N}}\hspace{0.1cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$
 
 
'''(3)'''&nbsp;Die Wahrscheinlichkeit, dass die Bitfehlerrate (kurz BER) einen Wert außerhalb des Bereichs  
 
'''(3)'''&nbsp;Die Wahrscheinlichkeit, dass die Bitfehlerrate (kurz BER) einen Wert außerhalb des Bereichs  
 
von 0.95&nbsp;&middot;&nbsp;<i>p</i>&nbsp;und&nbsp;1.05 &middot;&nbsp;<i>p</i> annimmt, kann mit <i>&epsilon;</i> = 5 &middot; 10<sup>&ndash;4</sup> (wegen <i>p</i> = 0.01) wie folgt berechnet werden:
 
von 0.95&nbsp;&middot;&nbsp;<i>p</i>&nbsp;und&nbsp;1.05 &middot;&nbsp;<i>p</i> annimmt, kann mit <i>&epsilon;</i> = 5 &middot; 10<sup>&ndash;4</sup> (wegen <i>p</i> = 0.01) wie folgt berechnet werden:

Revision as of 17:08, 25 October 2017


Tabelle der Gaußsche Fehlerfunktionen

Von einem digitalen Übertragungssystem ist bekannt, dass es durch ein BSC–Modell (Binary Symmetrical Channel) mit Fehlerwahrscheinlichkeit $p$ angenähert werden kann.

Zur Verifizierung soll die Bitfehlerquote ermittelt werden, indem man die Sinkensymbolfolge $ \langle v_\nu \rangle $ mit der Quellensymbolfolge $ \langle q_\nu \rangle $ vergleicht und daraus die Fehlerfolge $ \langle e_\nu \rangle $ ermittelt. Dabei gilt:

$$e_\nu = \left\{ \begin{array}{c} 0 \\ 1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} v_\nu = q_\nu \hspace{0.05cm}, \\ v_\nu \ne q_\nu . \\ \end{array}$$ Die Bitfehlerquote (englisch: Bit Error Rate) ist eine Näherung für die Bitfehlerwahrscheinlichkeit $p$:

$${\rm BER} = \frac{1}{N}\cdot\sum_{\nu=1}^N e_\nu.$$

Je größer der Simulationsparameter $N$ gewählt wird, um so genauer ist diese Näherung.

Aus der Aufgabe 3.7 im Buch „Stochastische Signaltheorie” ist bekannt, dass die Zufallsgröße „BER” eigentlich binominalverteilt ist, aber mit guter Näherung durch eine (diskrete) Gaußverteilung mit dem Mittelwert $p$ und der Streuung $\sigma$ angenähert werden kann:

$$\sigma = \sqrt{\frac{ p\cdot (\rm 1- \it p)}{N}}.$$


Hinweise:


Fragebogen

1

Was beschreibt $\rm BER$ im Sinne der Wahrscheinlichkeitsrechnung?

$\rm BER$ ist eine Wahrscheinlichkeit.
$\rm BER$ ist eine relative Häufigkeit.
Wenn $N$ hinreichend groß ist, stimmt $\rm BER$ mit $p$ exakt überein.

2

Berechnen Sie die Streuung $\sigma$ für $N = 10^6$ und $p = 10^{-2}$.

$p = 10^{-2}\text{:} \hspace{0.4cm}\sigma \ =\ $

$\ \cdot 10^{ -4 }\ $

3

Wie groß ist die Wahrscheinlichkeit, dass die Bitfehlerquote betragsmäßig um mehr als 5% von der Wahrscheinlichkeit $p = 10^{-2}$ abweicht?

$p = 10^{-2}\text{:} \hspace{0.4cm}{\rm Pr}(|{\rm BER} – p| > 0.05 · p) \ =\ $

$\ \cdot 10^{ -4 }\ $

4

Wie groß ist die gleiche Wahrscheinlichkeit mit $p = 10^{-4}$?

$p = 10^{-4}\text{:} \hspace{0.4cm}{\rm Pr}(|{\rm BER} – p| > 0.05 · p) \ =\ $

5

Wie groß müsste $N$ mindestens sein, damit bei $p = 10^{-4}$ nicht mehr als $10\%$ außerhalb des Intervalls von $0.95 \cdot 10^{-4}$ ... $1.05 \cdot 10^{-4}$ liegen?

$p = 10^{-4}\text{:} \hspace{0.4cm}N_{\rm min} \ =\ $

$\ \cdot 10^{ 6 }\ $


Musterlösung

(1)  Richtig ist nur die zweite Aussage:

  • $\rm BER$ ist als Quotient aus der Anzahl $n_{\rm B}$ der festgestellten Symbolfehler und der Anzahl $N$ aller simulierten Symbole und damit tatsächlich als relative Häufigkeit definiert.
  • Die Wahrscheinlichkeit, dass $\rm BER = p$ gilt, ist stets genau 0, da $\rm BER$ eine kontinuierliche Zufallsgröße darstellt.
  • Allerdings wird die Wahrscheinlichkeit, dass $\rm BER$ in einem schmalen Intervall um $p$ liegt, mit steigendem $N$ immer größer.


(2) Die Streuung der Gaußschen Zufallsgröße $\rm BER$ ergibt sich mit $N = 10^6$ und $p = 10^{-2}$ zu

$$\sigma = \sqrt{{ p\cdot (\rm 1- \it p)}/{N}}\approx \sqrt{{ p}/{N}}\hspace{0.1cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$

(3) Die Wahrscheinlichkeit, dass die Bitfehlerrate (kurz BER) einen Wert außerhalb des Bereichs von 0.95 · p und 1.05 · p annimmt, kann mit ε = 5 · 10–4 (wegen p = 0.01) wie folgt berechnet werden: $${\rm Pr} \left( {\rm BER} < 0.95 \cdot 10^{-2} \right) = {\rm Pr} \left( {\rm BER} > 1.05 \cdot 10^{-2} \right) = {\rm Q} \left({\varepsilon}/{\sigma} \right)$$ $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - p| > \varepsilon \right) = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-4}}{10^{-4}} \right) = 2 \cdot 0.287 \cdot 10^{-6}\hspace{0.1cm}\underline {= 0.574 \cdot 10^{-6}}\hspace{0.05cm}.$$

(4) Mit p = 10–4 gilt für die vergleichbare Wahrscheinlichkeit: $${\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) = 2 \cdot {\rm Q} \left( {\varepsilon}/{\sigma} \right)\hspace{0.05cm}.$$ $$\sigma \approx \sqrt{{ p}/{N}}= 10^{-5}\hspace{0.05cm}, \hspace{0.3cm}\varepsilon = 5 \cdot 10^{-6}:$$ $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-6}}{10^{-5}} \right) = 2 \cdot 0.309 \hspace{0.1cm}\underline {= 0.618} \hspace{0.05cm}.$$

(5) Diese Bedingung lässt sich mit ε = 5 · 10–6 wie folgt formulieren: $${\rm Q} \left( {\varepsilon}/{\sigma} \right) < 0.1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\varepsilon}/{\sigma} > {\rm Q}^{-1}(0.05) \approx 1.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\varepsilon^2}{\sigma^2}\approx \frac{\varepsilon^2 \cdot N}{p}> 1.64^2 = 2.69$$ $$\Rightarrow \hspace{0.3cm} N > \frac{2.69 \cdot p}{\varepsilon^2}= \frac{2.69 \cdot 10^{-4}}{25 \cdot10^{-12}}\hspace{0.1cm}\underline {\approx 1.08 \cdot 10^{7}} = 10.8 \, {\rm Millionen}\hspace{0.05cm}.$$