Difference between revisions of "Aufgaben:Exercise 3.5: Eye Opening with Pseudoternary Coding"

From LNTwww
Line 8: Line 8:
 
* Koaxialkabel mit charakteristischer Kabeldämpfung $a_* = 40 \, {\rm dB}$,
 
* Koaxialkabel mit charakteristischer Kabeldämpfung $a_* = 40 \, {\rm dB}$,
 
* AWGN–Rauschen mit der Rauschleistungsdichte $N_0$,
 
* AWGN–Rauschen mit der Rauschleistungsdichte $N_0$,
* Empfangsfilter, bestehend aus einem idealen Kanalentzerrer und einem Gaußtiefpass mit der normierten Grenzfrequenz $f_{\rm G} \cdot T \approx 0.5$.
+
* Empfangsfilter $H_{\rm E}(f) = 1/H_{\rm K}(f) \cdot H_{\rm G}(f) $, bestehend aus einem idealen Kanalentzerrer $H_{\rm K}(f)^{-1}$ und einem Gaußtiefpass $H_{\rm G}(f)$ mit der normierten Grenzfrequenz $f_{\rm G} \cdot T \approx 0.5$.
 
* Schwellenwertentscheider mit optimalen Entscheiderschwellen und optimalem Detektionszeitpunkt $T_{\rm D} = 0$.
 
* Schwellenwertentscheider mit optimalen Entscheiderschwellen und optimalem Detektionszeitpunkt $T_{\rm D} = 0$.
  
Line 14: Line 14:
 
Die in der Aufgabe zu untersuchenden Systemvarianten unterscheiden sich ausschließlich hinsichtlich des Übertragungscodes:  
 
Die in der Aufgabe zu untersuchenden Systemvarianten unterscheiden sich ausschließlich hinsichtlich des Übertragungscodes:  
  
<font color="#cc0000"><span style="font-weight: bold;">System A</span></font> verwendet ein binäres bipolares redundanzfreies Sendesignal. Von diesem System sind folgende Beschreibungsgrößen bekannt:
+
'''System A''' verwendet ein binäres bipolares redundanzfreies Sendesignal. Von diesem System sind folgende Beschreibungsgrößen bekannt:
* Grundimpulswerte $g_0 = 1.56 \, {\rm V}$, $g_1 = g_{\rm &ndash;1} = 0.22 \, {\rm V}$, $g_2 = g_{\rm &ndash;2} = \, ... \, \approx 0$
+
* Grundimpulswerte $g_0 = 1.56 \, {\rm V}$, $g_1 = g_{\rm &ndash;1} = 0.22 \, {\rm V}$, $g_2 = g_{\rm &ndash;2} = \, \text{ ...} \, \approx 0$
 
:$$\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{ 2}  = g_{0}
 
:$$\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{ 2}  = g_{0}
 
  -g_{1}-g_{-1} = 1.12\,{\rm V}
 
  -g_{1}-g_{-1} = 1.12\,{\rm V}
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
* Rauscheffektivwert $\sigma_d \approx = 0.2 \, {\rm V}$
+
* Rauscheffektivwert $\sigma_d \approx 0.2 \, {\rm V}$
 
:$$\Rightarrow \hspace{0.3cm}\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{
 
:$$\Rightarrow \hspace{0.3cm}\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{
 
  \sigma_d^2}\approx 31.36\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  \sigma_d^2}\approx 31.36\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \approx 15\,{\rm dB}\hspace{0.05cm}.$$
 
  10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \approx 15\,{\rm dB}\hspace{0.05cm}.$$
  
<font color="#cc0000"><span style="font-weight: bold;">System B</span></font> verwendet AMI&ndash;Codierung. Hier treten die äußeren Symbole $&bdquo;+1&rdquo;$ bzw, $&bdquo;&ndash;1&rdquo;$ nur isoliert auf. Bei drei aufeinanderfolgenden Symbolen sind unter Anderem die zwei Folgen $&bdquo; \, ... \, , \, +1, \, +1, \, +1, \, ... \,&rdquo;$ und $&bdquo; \, ... \, , \, +1, \, 0, \, +1, \, ... \ &rdquo;$ nicht möglich im Gegensatz zu $&bdquo; \, ... \, , \, +1, \, &ndash;1, \, +1, \, ... \,&rdquo;$
+
'''System B''' verwendet AMI&ndash;Codierung. Hier treten die äußeren Symbole $&bdquo;+1&rdquo;$ bzw, $&bdquo;&ndash;1&rdquo;$ nur isoliert auf. Bei drei aufeinanderfolgenden Symbolen sind unter anderem die Folgen &bdquo;$\hspace{-0.1cm}\text{ ...} \, , \, +1, \, +1, \, +1, \,\text{ ...}$&rdquo; und &bdquo; $\hspace{-0.1cm}\text{ ...} \, , \, +1, \, 0, \, +1, \, \text{ ...} $&rdquo; nicht möglich im Gegensatz zu &bdquo; $\hspace{-0.1cm}\text{ ...\, , \, +1, \, &ndash;1, \, +1, \, \text{ ...} $&rdquo;.
  
<font color="#cc0000"><span style="font-weight: bold;">System C</span></font> verwendet Duobinärcode. Hier wird die alternierende Folge $&bdquo; \, ... \, , \, &ndash;1, \, +1, \, &ndash;1, \, ... \,&rdquo;$ durch den Code ausgeschlossen, was sich günstig auf die Augenöffnung auswirkt.  
+
'''System C''' verwendet den Duobinärcode. Hier wird die alternierende Folge &bdquo;$\hspace{-0.1cm} \text{ ...\, , \, &ndash;1, \, +1, \, &ndash;1, \, \text{ ...}  $&rdquo; durch den Code ausgeschlossen, was sich günstig auf die Augenöffnung auswirkt.  
  
  
Line 32: Line 32:
 
*Die Aufgabe gehört zum  Kapitel [[Digitalsignal%C3%BCbertragung/Impulsinterferenzen_bei_mehrstufiger_%C3%9Cbertragung|Impulsinterferenzen bei mehrstufiger Übertragung]].
 
*Die Aufgabe gehört zum  Kapitel [[Digitalsignal%C3%BCbertragung/Impulsinterferenzen_bei_mehrstufiger_%C3%9Cbertragung|Impulsinterferenzen bei mehrstufiger Übertragung]].
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
*Für die komplementäre Gaußsche Fehlerfunktion gilt:
+
* Nicht alle der hier angegebenen Zahlenwerte sind zur Lösung dieser Aufgabe erforderlich.
:$${\rm Q}(0.25) = 0.4013,\hspace{0.2cm}{\rm Q}(0.50) = 0.3085,\hspace{0.2cm}{\rm Q}(0.75) = 0.2266,\hspace{0.2cm}{\rm Q}(1.00) = 0.1587,$$
 
:$${\rm Q}(1.25) = 0.1057,\hspace{0.2cm}{\rm Q}(1.50) = 0.0668,\hspace{0.2cm}{\rm Q}(1.75) = 0.0401,\hspace{0.2cm}{\rm Q}(2.00) =
 
0.0228.$$
 
  
''Hinweise:''
 
* Diese Aufgabe bezieht sich auf das Kapitel[[Digitalsignal%C3%BCbertragung/Impulsinterferenzen_bei_mehrstufiger_%C3%9Cbertragung|Impulsinterferenzen bei mehrstufiger Übertragung]].
 
* Nicht alle der hier angegebenen Zahlenwerte sind zur Lösung dieser Aufgabe erforderlich.
 
  
  

Revision as of 15:11, 29 October 2017

Augendiagramme beim AMI– und Duobinärcode

Betrachtet werden drei Nachrichtenübertragungssysteme, jeweils mit folgenden übereinstimmenden Eigenschaften:

  • NRZ–Rechteckimpulse mit der Amplitude $s_0 = 2 \, {\rm V}$,
  • Koaxialkabel mit charakteristischer Kabeldämpfung $a_* = 40 \, {\rm dB}$,
  • AWGN–Rauschen mit der Rauschleistungsdichte $N_0$,
  • Empfangsfilter $H_{\rm E}(f) = 1/H_{\rm K}(f) \cdot H_{\rm G}(f) $, bestehend aus einem idealen Kanalentzerrer $H_{\rm K}(f)^{-1}$ und einem Gaußtiefpass $H_{\rm G}(f)$ mit der normierten Grenzfrequenz $f_{\rm G} \cdot T \approx 0.5$.
  • Schwellenwertentscheider mit optimalen Entscheiderschwellen und optimalem Detektionszeitpunkt $T_{\rm D} = 0$.


Die in der Aufgabe zu untersuchenden Systemvarianten unterscheiden sich ausschließlich hinsichtlich des Übertragungscodes:

System A verwendet ein binäres bipolares redundanzfreies Sendesignal. Von diesem System sind folgende Beschreibungsgrößen bekannt:

  • Grundimpulswerte $g_0 = 1.56 \, {\rm V}$, $g_1 = g_{\rm –1} = 0.22 \, {\rm V}$, $g_2 = g_{\rm –2} = \, \text{ ...} \, \approx 0$
$$\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{ 2} = g_{0} -g_{1}-g_{-1} = 1.12\,{\rm V} \hspace{0.05cm}.$$
  • Rauscheffektivwert $\sigma_d \approx 0.2 \, {\rm V}$
$$\Rightarrow \hspace{0.3cm}\rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}\approx 31.36\,{\rm dB} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \approx 15\,{\rm dB}\hspace{0.05cm}.$$

System B verwendet AMI–Codierung. Hier treten die äußeren Symbole $„+1”$ bzw, $„–1”$ nur isoliert auf. Bei drei aufeinanderfolgenden Symbolen sind unter anderem die Folgen „$\hspace{-0.1cm}\text{ ...} \, , \, +1, \, +1, \, +1, \,\text{ ...}$” und „ $\hspace{-0.1cm}\text{ ...} \, , \, +1, \, 0, \, +1, \, \text{ ...} $” nicht möglich im Gegensatz zu „ $\hspace{-0.1cm}\text{ ...} \, , \, +1, \, –1, \, +1, \, \text{ ...} $”.

System C verwendet den Duobinärcode. Hier wird die alternierende Folge „$\hspace{-0.1cm} \text{ ...} \, , \, –1, \, +1, \, –1, \, \text{ ...} $” durch den Code ausgeschlossen, was sich günstig auf die Augenöffnung auswirkt.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Impulsinterferenzen bei mehrstufiger Übertragung.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Nicht alle der hier angegebenen Zahlenwerte sind zur Lösung dieser Aufgabe erforderlich.


Fragebogen

1

Berechnen Sie die halbe Augenöffnung für den AMI–Code.

${\rm System \, B}: \, \ddot{o}(T_{\rm D})/2$ =

${\rm V}$

2

Berechnen Sie den ungünstigsten Störabstand dieses Systems.

${\rm System \, B}: \, 10 \cdot {\rm lg} \, \rho_{\rm U}$ =

${\rm dB}$

3

Wie müssen die Schwellenwerte $E_1$ und $E_2$ gewählt werden, damit das soeben berechnete Ergebnis stimmt?

$E_1$ =

${\rm V}$
$E_2$ =

${\rm V}$

4

Berechnen Sie die halbe Augenöffnung beim Duobinär–Code.

${\rm System \, C}: \, \ddot{o}(T_{\rm D})/2$ =

${\rm V}$

5

Berechnen Sie den ungünstigsten Störabstand bei Duobinärcodierung.

${\rm System \, C}: \, 10 \cdot {\rm lg} \, \rho_{\rm U}$ =

${\rm dB}$


Musterlösung

(1)  Da beim AMI–Code die Symbolrate gegenüber dem redundanzfreien Binärsystem nicht verändert wird, bleiben die Grundimpulswerte $g_0 = 1.56 \, {\rm V}, g_1 = g_{\rm –1} = 0.22 \, {\rm V}$ und $g_2 = g_{\rm –2} \approx 0$ unverändert.

Bei Pseudoternärcodierung gibt es stets zwei Augenöffnungen. Die obere Begrenzungslinie des oberen Auges ergibt sich beim AMI–Code wie beim redundanzfreien Binärsystem:

$$d_{\rm oben}= g_0 - 2 \cdot g_1 \hspace{0.2cm}{\rm (zugeh\ddot{o}rige} \hspace{0.1cm}{\rm Folge:}-1, +1, -1{\rm )} \hspace{0.05cm}.$$

Dagegen gilt für die untere Begrenzungslinie des oberen Auges:

$$d_{\rm unten}= g_1 \hspace{0.2cm}{\rm (zugeh\ddot{o}rige} \hspace{0.1cm}{\rm Folge:}\hspace{0.2cm}0, \hspace{0.05cm}0, +1\hspace{0.2cm}{\rm bzw.}\hspace{0.2cm}+1, \hspace{0.05cm}0, \hspace{0.05cm}0{\rm )}\hspace{0.05cm}.$$

Für die halbe Augenöffnung gilt somit:

$${\ddot{o}(T_{\rm D})}/{2}= {1}/{2} \cdot (d_{\rm oben} - d_{\rm unten}) = {1}/{2} \cdot g_0 - {3}/{2} \cdot g_1 \hspace{0.15cm}\underline {= 0.45\,{\rm V}}\hspace{0.05cm}.$$

Die entsprechende Gleichung für das redundanzfreie Binärsystem lautet:

$${\ddot{o}(T_{\rm D})}/{2}= g_0 - 2 \cdot g_1 \hspace{0.05cm}.$$


(2)  Bezüglich des Rauschens gibt es keinen Unterschied zwischen den Systemen A, B und C, da stets die gleiche Symbolrate vorliegt. Daraus folgt für den AMI–Code:

$$\rho_{\rm U} = \frac{(0.45\,{\rm V})^2}{(0.2\,{\rm V})^2} = 5.06 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline {\approx 7\,{\rm dB}} \hspace{0.05cm}.$$

Die Einbuße gegenüber dem redundanzfreien Binärsystem beträgt somit fast $8 \, {\rm dB}$. Der Grund für diesen gravierenden Störabstandverlust ist, dass beim AMI–Code trotz $37 %$ Redundanz die bezüglich der Impulsinterferenzen besonders ungünstige Symbolfolge $" \, ... \, , \, –1, \, +1, \, –1, \, ... \,"$ nicht ausgeschlossen wird.


(3)  Die Schwelle $E_2$ muss in der Mitte zwischen $d_{\rm oben}$ und $d_{\rm unten}$ liegen:

$$E_2= {1}/{2} \cdot (d_{\rm oben} + d_{\rm unten}) = {1}/{2} \cdot (g_0 - g_1 ) \hspace{0.15cm}\underline {= 0.67\,{\rm V}}\hspace{0.05cm}.$$

Der Schwellenwert $E_1$ liegt symmetrisch dazu: $E_1 \, \underline {= \, –0.67 {\rm V}}$.


(4)  Wir gehen wieder von den gleichen Grundimpulswerten aus. Die ungünstigste Folge bezüglich der oberen Begrenzungslinie des oberen Auges ist $" \, ... \, , \, 0, \, +1, \, 0, \, ... \, "$, während die untere Begrenzungslinie durch $" \, ... \, , \, 0, \, 0, \, +1, \, ... \, "$ bzw. $" \, ... \, , \, +1, \, 0, \, 0, \, ... \, "$ bestimmt wird. Daraus folgt:

$$d_{\rm oben}= g_0, \hspace{0.2cm} d_{\rm unten} = g_1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\ddot{o}(T_{\rm D})}/{2} = {g_0}/{2} - {g_1}/{2}\hspace{0.15cm}\underline { = 0.67\,{\rm V}} \hspace{0.05cm}.$$


(5)  Mit dem Ergebnis aus 4) erhält man analog zur Teilaufgabe 2)

$$\rho_{\rm U} = \frac{(0.67\,{\rm V})^2}{(0.2\,{\rm V})^2} = 11.2 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline {\approx 10.5\,{\rm dB}} \hspace{0.05cm}.$$

Voraussetzung für dieses Ergebnis sind Schwellenwerte bei

$$E_2= {1}/{2} \cdot (g_0 + g_1 ) = 0.89\,{\rm V}, \hspace{0.2cm}E_1 = - 0.89\,{\rm V}\hspace{0.05cm}.$$

Anzumerken ist, dass hier stets von der gleichen Grenzfrequenz $f_{\rm G} \cdot T = 0.5$ ausgegangen wurde. Bei Optimierung der Grenzfrequenz kann es durchaus sein, dass der Duobinärcode dem redundanzfreien Binärcode überlegen ist, wenn die charakteristische Kabeldämpfung hinreichend groß ist.