Difference between revisions of "Aufgaben:Exercise 1.3: Rectangular Functions for Transmitter and Receiver"
Line 53: | Line 53: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1.''' | + | '''1.''' Beim System A führt die Faltung der beiden gleich breiten Rechteckfunktionen $g_{\rm s}(t)$ und $h_{\rm E}(t)$ zu einem dreieckförmigen Detektionsgrundimpuls mit dem Maximum bei $t = 0$: |
− | '''2.''' | + | :$$g_d (t = 0) = \int_{ - T/2}^{ |
− | '''3.''' | + | + T/2} { g_s(t) \cdot h_{\rm E}( t )} \hspace{0.1cm}{\rm{d}}t =s_0 |
− | '''4.''' | + | \cdot \frac{1 }{T} \cdot T = s_0 \hspace{0.1cm}\underline { = 6 \,\,\sqrt{{\rm |
− | '''5.''' | + | W}}}\hspace{0.05cm}.$$ |
− | '''6.''' | + | '''2.''' |
− | '''7.''' | + | '''3.''' |
+ | '''4.''' | ||
+ | '''5.''' | ||
+ | '''6.''' | ||
+ | '''7.''' | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 14:34, 1 November 2017
Wir betrachten hier drei Varianten eines binären bipolaren AWGN–Übertragungssystems, die sich hinsichtlich des Sendegrundimpulses $g_{\rm s}(t)$ sowie der Impulsantwort $h_{\rm E}(t)$ des Empfangsfilters unterscheiden:
- Beim System A sind beide Zeitfunktionen $g_{\rm s}(t)$ und $h_{\rm E}(t)$ rechteckförmig, lediglich die Impulshöhen ($s_{\rm 0}$ bzw. $1/T$) sind unterschiedlich.
- Das System B unterscheidet sich vom System A durch einen dreieckförmigen Sendegrundimpuls mit $g_{\rm s}(t=0) = s_{\rm 0}$.
- Das System C hat den gleichen Sendegrundimpuls wie das System A, während die Impulsantwort mit $h_{\rm E}(t=0) = 1/T$ dreieckförmig verläuft.
Die absolute Breite der hier betrachteten Rechteck– und Dreieckfunktionen beträgt jeweils $T = 10 \ \rm \mu s$. Die Bitrate ist $R = 100 \ \rm kbit/s$. Die weiteren Systemparameter sind wie folgt gegeben:
- $$s_0 = 6 \,\,\sqrt{W}\hspace{0.05cm},\hspace{0.3cm} N_{\rm 0} = 2 \cdot 10^{-5} \,\,{\rm W/Hz}\hspace{0.05cm}.$$
Hinweise:
Die Aufgabe bezieht sich auf das Fehlerwahrscheinlichkeit bei Basisbandübertragung des vorliegenden Buches. Zur Bestimmung von Fehlerwahrscheinlichkeiten können Sie das folgende Interaktionsmodul verwenden:
Komplementäre Gaußsche Fehlerfunktionen
Berücksichtigen Sie bei der Berechnung der Detektionsstörleistung das Theorem von Wiener–Chintchine:
- $$ \sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H_{\rm E}( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {h_{\rm E}( t )} \right|^2 \hspace{0.1cm}{\rm{d}}t}\hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$g_d (t = 0) = \int_{ - T/2}^{ + T/2} { g_s(t) \cdot h_{\rm E}( t )} \hspace{0.1cm}{\rm{d}}t =s_0 \cdot \frac{1 }{T} \cdot T = s_0 \hspace{0.1cm}\underline { = 6 \,\,\sqrt{{\rm W}}}\hspace{0.05cm}.$$
2. 3. 4. 5. 6. 7.