Difference between revisions of "Aufgaben:Exercise 3.8Z: Optimal Detection Time for DFE"
Line 33: | Line 33: | ||
<quiz display=simple> | <quiz display=simple> | ||
+ | {Berechnen Sie die halbe Augenöffnung für $T_{\rm D} = 0$ und ideale DFE. | ||
+ | |type="{}"} | ||
+ | $100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)$ = { 0.205 3% } | ||
+ | |||
+ | {Wie müssen hierzu die Koeffizienten des Laufzeitfilters eingestellt werden? | ||
+ | |type="{}"} | ||
+ | $k_1$ = { 0.235 3% } | ||
+ | $k_2$ = { 0.029 3% } | ||
+ | $k_3$ = { 0.001 3% } | ||
+ | |||
+ | {Es gelte weiter $T_{\rm D} = 0$. Welche (halbe) Augenöffnung ergibt sich, wenn die DFE die Nachläufer nur zu $50 \%$ kompensiert? | ||
+ | |type="{}"} | ||
+ | $50\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)$ = { 0.072 3% } | ||
+ | |||
+ | {Bestimmen Sie den optimalen Detektionszeitpunkt und die Augenöffnung bei idealer DFE. | ||
+ | |type="{}"} | ||
+ | $D_{\rm D, \ opt}/T$ = { -0.412--0.388 } | ||
+ | $100\% \ {\rm DFE} \text{:} \hspace{0.2cm} \ddot{o}(T_{\rm D} = 0)/(2s_0)$ = { 0.205 3% } | ||
+ | |||
{Multiple-Choice Frage | {Multiple-Choice Frage | ||
|type="[]"} | |type="[]"} | ||
- Falsch | - Falsch | ||
+ Richtig | + Richtig | ||
− | |||
{Input-Box Frage | {Input-Box Frage | ||
|type="{}"} | |type="{}"} | ||
$\alpha$ = { 0.3 } | $\alpha$ = { 0.3 } | ||
− | |||
− | |||
− | |||
</quiz> | </quiz> | ||
Revision as of 09:43, 2 November 2017
Wir betrachten wie in der Aufgabe 3.8 das bipolare Binärsystem mit Entscheidungsrückkopplung. Im Englischen bezeichnet man diese Konstellation als Decision Feedback Equalization (DFE).
Der vorentzerrte Grundimpuls $g_d(t)$ am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz $f_{\rm G} \cdot T = 0.25$.
In der Tabelle sind die auf $s_0$ normierten Abtastwerte von $g_d(t)$ angegeben. Auf der Angabenseite zu Aufgabe 3.8 ist $g_d(t)$ skizziert.
Bei der idealen DFE wird ein Kompensationsimpuls $g_w(t)$ gebildet, der für alle Zeiten $t ≥ T_{\rm D} + T_{\rm V}$ genau gleich dem Eingangsimpuls $g_d(t)$ ist, so dass für den korrigierten Grundimpuls gilt:
- $$g_k(t) \ = \ g_d(t) - g_w(t) = \ \left\{ \begin{array}{c} g_d(t) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c} t < T_{\rm D} + T_{\rm V}, \\ t \ge T_{\rm D} + T_{\rm V}, \\ \end{array}$$
Hierbei bezeichnet $T_{\rm D}$ den Detektionszeitpunkt, der eine optimierbare Systemgröße darstellt. $T_{\rm D} = 0$ bedeutet eine Symboldetektion in Impulsmitte.
Bei einem System mit DFE ist jedoch $g_k(t)$ stark unsymmetrisch, so dass ein Detektionszeitpunkt $T_{\rm D} < 0$ günstiger ist. Die Verzögerungszeit $T_{\rm V} = T/2$ gibt an, dass die DFE erst eine halbe Symboldauer nach der Detektion wirksam wird. Zur Lösung dieser Aufgabe ist $T_{\rm V}$ allerdings nicht relevant.
Eine aufwandsgünstige Realisierung der DFE ist mit einem Laufzeitfilter möglich, wobei die Filterordnung bei dem gegebenen Grundimpuls mindestens $N = 3$ betragen muss. Die Filterkoeffizienten sind dabei wie folgt zu wählen:
- $$k_1 = g_d(T_{\rm D} + T),\hspace{0.2cm}k_2 = g_d(T_{\rm D} + 2T),\hspace{0.2cm}k_3 = g_d(T_{\rm D} + 3T) \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe behandelt die theoretischen Grundlagen des Kapitels Entscheidungsrückkopplung.
- Beachten Sie auch, dass die Entscheidungsrückkopplung nicht mit einer Erhöhung der Rauschleistung verbunden ist, so dass eine Vergrößerung der (halben) Augenöffnung um den Faktor $K$ gleichzeitig einen Störabstandsgewinn von $20 \cdot {\rm lg} \, K$ zur Folge hat.
- Der vorentzerrte Grundimpuls $g_d(t)$ am Eingang der DFE entspricht der Rechteckantwort eines Gaußtiefpasses mit der Grenzfrequenz $f_{\rm G} \cdot T = 0.25$. In der Tabelle sind die auf $s_0$ normierten Abtastwerte von $g_d(t)$ angegeben. Auf der Angabenseite zu Aufgabe A3.8 ist $g_d(t)$ skizziert.
Fragebogen
Musterlösung