Difference between revisions of "Aufgaben:Exercise 1.10Z: Gaussian Band-Pass"
Line 67: | Line 67: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Für den Bandpass–Frequenzgang $H_{\rm K}(f)$ kann geschrieben werden: |
− | + | :$$H_{\rm K}(f) = H_{\rm K,\hspace{0.04cm} TP}(f) \star \left [ \delta (f - f_{\rm M}) + \delta (f + f_{\rm M}) \right ] .$$ | |
− | '''( | + | Die Fourierrücktransformierte des Klammerausdrucks liefert eine Cosinusfunktion der Frequenz $f_{\rm M}$ mit der Amplitude 2. Nach dem Faltungssatz gilt somit: |
− | + | :$$h_{\rm K}(t) = 2 \cdot \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ] \cdot \cos(2 \pi f_{\rm M} t ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm K}(t = 0)/\Delta f_{\rm K} \hspace{0.1cm}\underline {= 2}.$$ | |
− | '''( | + | Das heißt: Die TP–Impulsantwort $h_{\rm K,TP}(t)$ ist formgleich mit der Hüllkurve der BP–Impulsantwort $h_{\rm K}(t)$, aber doppelt so groß. |
− | '''( | + | |
+ | '''(2)''' Die erste Aussage ist falsch, da $H_{\rm MKD}(f)$ auch Anteile um $\pm 2f_{\rm T}$ besitzt. Die Zeitfunktion $h_{\rm K,TP}(t)$ ist entsprechend der angegebenen Gleichung reell. Gleiches gilt für $h_{\rm MKD}(t)$ auch unter Berücksichtigung der $\pm 2f_{\rm T}$–Anteile, da $H_{\rm MKD}(f)$ eine bezüglich $f = 0$ gerade Funktion ist. Richtig sind also die <u>Aussagen 2, 3 und 4.</u> | ||
+ | Die Grafik zeigt den Frequenzgang $H_{\rm MKD}(f)$, der auch Anteile um $\pm 2f_{\rm T}$ besitzt. Bei tiefen Frequenzen ist $H_{\rm K,TP}(f)$ identisch mit $H_{\rm MKD}(f)$. | ||
+ | [[File:P_ID1698__Dig_Z_4_3_b.png|center|frame|Resultierender Basisbandfrequenzgang]] | ||
+ | |||
+ | '''(3)''' Hier unterscheiden sich $H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$ auch bei den tiefen Frequenzen. $H_{\rm K,TP}(f)$ ist eine Gaußfunktion mit dem Maximum bei $f_{ε} = f_{\rm M} – f_{\rm T}$. Aufgrund dieser Unsymmetrie ist $h_{\rm K,TP}(t)$ komplex. Dagegen ist $H_{\rm MKD}(f)$ weiterhin eine bezüglich $f = 0$ gerade Funktion mit reeller Impulsantwort $h_{\rm MKD}(t)$. $H_{\rm MKD}(f)$ setzt sich aus zwei Gaußfunktionen bei $± f_ε$ zusammen. Richtig ist nur der <u>Lösungsvorschlag 4.</u> | ||
+ | [[File:P_ID1699__Dig_Z_4_3c.png|center|frame|Resultierender Basisbandfrequenzgang]] | ||
+ | |||
+ | '''(4)''' Richtig ist natürlich die <u>erste Antwort.</u> | ||
+ | |||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 16:59, 7 November 2017
Bei trägerfrequenzmodulierter Übertragung muss der Kanalfrequenzgang $H_{\rm K}(f)$ stets als Bandpass angesetzt werden. Die Kanalparameter sind zum Beispiel die Mittenfrequenz $f_{\rm M}$ und die Bandbreite $\Delta f_{\rm K}$, wobei die Mittenfrequenz $f_{\rm M}$ oft mit der Trägerfrequenz $f_{\rm T}$ übereinstimmt. In dieser Aufgabe soll insbesondere von einem Gaußbandpass mit dem Frequenzgang
- $$H_{\rm K}(f) = {\rm exp} \left [ - \pi \cdot \left ( \frac {f - f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ] +{\rm exp} \left [ - \pi \cdot \left ( \frac {f + f_{\rm M} }{\Delta f_{\rm K}}\right )^2 \right ]$$
entsprechend der Grafik ausgegangen werden:
- Zur Modulation wird binäre Phasenmodulation (BPSK) verwendet.
- Die Demodulation erfolgt frequenz– und phasensynchron.
Zur Beschreibung benutzt man oft den äquivalenten TP–Frequenzgang $H_{\rm K,TP}(f)$. Dieser ergibt sich aus $H_{\rm K}(f)$ durch
- Abschneiden der Anteile bei negativen Frequenzen,
- Verschieben des Spektrums um $f_{\rm T}$ nach links.
Im betrachteten Beispiel ergibt sich mit $f_{\rm T} = f_{\rm M}$ für den äquivalenten TP–Frequenzgang:
- $$ H_{\rm K,\hspace{0.04cm} TP}(f) = {\rm exp} \left [ - \pi \cdot \left ( {f }/{\Delta f_{\rm K}}\right )^2 \right ].$$
Die entsprechende Zeitfunktion (Fouruerrücktransformierte) lautet:
- $$ h_{\rm K,\hspace{0.04cm} TP}(t) = \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ].$$
Zur Beschreibung eines phasensynchronen BPSK–Systems im Tiefpassbereich eignet sich aber auch der Frequenzgang
- $$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] ,$$
wobei „MKD” für Modulator – Kanal – Demodulator steht. Häufig – aber nicht immer – sind $H_{\rm MKD}(f)$ und $H_{\rm K,TP}(f)$ identisch.
Hinweis:
Die Aufgabe bezieht sich auf die letzte Theorieseite von Lineare digitale Modulation – Kohärente Demodulation.
Fragebogen
Musterlösung
- $$H_{\rm K}(f) = H_{\rm K,\hspace{0.04cm} TP}(f) \star \left [ \delta (f - f_{\rm M}) + \delta (f + f_{\rm M}) \right ] .$$
Die Fourierrücktransformierte des Klammerausdrucks liefert eine Cosinusfunktion der Frequenz $f_{\rm M}$ mit der Amplitude 2. Nach dem Faltungssatz gilt somit:
- $$h_{\rm K}(t) = 2 \cdot \Delta f_{\rm K} \cdot {\rm exp} \left [ - \pi \cdot \left ( {\Delta f_{\rm K}} \cdot t \right )^2 \right ] \cdot \cos(2 \pi f_{\rm M} t ) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm K}(t = 0)/\Delta f_{\rm K} \hspace{0.1cm}\underline {= 2}.$$
Das heißt: Die TP–Impulsantwort $h_{\rm K,TP}(t)$ ist formgleich mit der Hüllkurve der BP–Impulsantwort $h_{\rm K}(t)$, aber doppelt so groß.
(2) Die erste Aussage ist falsch, da $H_{\rm MKD}(f)$ auch Anteile um $\pm 2f_{\rm T}$ besitzt. Die Zeitfunktion $h_{\rm K,TP}(t)$ ist entsprechend der angegebenen Gleichung reell. Gleiches gilt für $h_{\rm MKD}(t)$ auch unter Berücksichtigung der $\pm 2f_{\rm T}$–Anteile, da $H_{\rm MKD}(f)$ eine bezüglich $f = 0$ gerade Funktion ist. Richtig sind also die Aussagen 2, 3 und 4. Die Grafik zeigt den Frequenzgang $H_{\rm MKD}(f)$, der auch Anteile um $\pm 2f_{\rm T}$ besitzt. Bei tiefen Frequenzen ist $H_{\rm K,TP}(f)$ identisch mit $H_{\rm MKD}(f)$.
(3) Hier unterscheiden sich $H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$ auch bei den tiefen Frequenzen. $H_{\rm K,TP}(f)$ ist eine Gaußfunktion mit dem Maximum bei $f_{ε} = f_{\rm M} – f_{\rm T}$. Aufgrund dieser Unsymmetrie ist $h_{\rm K,TP}(t)$ komplex. Dagegen ist $H_{\rm MKD}(f)$ weiterhin eine bezüglich $f = 0$ gerade Funktion mit reeller Impulsantwort $h_{\rm MKD}(t)$. $H_{\rm MKD}(f)$ setzt sich aus zwei Gaußfunktionen bei $± f_ε$ zusammen. Richtig ist nur der Lösungsvorschlag 4.
(4) Richtig ist natürlich die erste Antwort.