Difference between revisions of "Aufgaben:Exercise 1.10: BPSK Baseband Model"

From LNTwww
Line 16: Line 16:
  
  
Die resultierende Übertragungsfunktion $H_{\rm MKD}(f)$ sollte man nicht mit der Tiefpass–Übertragungsfunktion $H_{\rm K,TP}(f)$ gemäß der Beschreibung in [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]] des Buches „Signaldarstellung” verwechseln, die sich aus $H_{\rm K}(f)$ durch Abschneiden der Anteile bei negativen Frequenzen sowie einer Frequenzverschiebung um $f_{\rm T}$ nach links ergibt.
+
Die resultierende Übertragungsfunktion $H_{\rm MKD}(f)$ sollte man nicht mit der Tiefpass–Übertragungsfunktion $H_{\rm K, \, TP}(f)$ gemäß der Beschreibung im Kapitel [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]] des Buches „Signaldarstellung” verwechseln, die sich aus $H_{\rm K}(f)$ durch Abschneiden der Anteile bei negativen Frequenzen sowie einer Frequenzverschiebung um $f_{\rm T}$ nach links ergibt. Bei Frequenzgängen muss im Gegensatz zu den Spektralfunktionen auf die Verdoppelung der Anteile bei positiven Frequenzen verzichtet werden.  
  
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
 
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
*Bezug genommen wird insbesondere auf die Seite [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Phasenversatz_zwischen_Sender_und_Empf.C3.A4nger|Phasenversatz zwischen Sender und Empfänger]].  
+
*Bezug genommen wird insbesondere auf die Seite [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Basisbandmodell_f.C3.BCr_ASK_und_BPSK|Basisbandmodell für ASK und BPSK]].  
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
*Die Werte der Q–Funktion können Sie  mit dem Applet [[Komplementäre Gaußsche Fehlerfunktionen]] ermitteln.
 
  
  
''Hinweis:''
 
 
Die Aufgabe gehört zum Themengebiet von [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
 
  
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
 +
 +
{Welche Aussagen gelten für die äquivalente Tiefpassfunktion  $H_{\rm K, \, TP}(f)$ ?
 +
|type="[]"}
 +
- Es gilt $H_{\rm K, \, TP}(f=0)= 2$.
 +
+Es gilt $H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
 +
+ Es gilt $H_{\rm K, \, TP}(f = –\Delta f_{\rm K}/4) = 0.75$.
 +
+Die dazugehörige Zeitfunktion $h_{\rm K, \, TP}(t)$ ist komplex.
  
 
{Welche Aussagen gelten für den Frequenzgang  $H_{\rm MKD}(f)$ ?
 
{Welche Aussagen gelten für den Frequenzgang  $H_{\rm MKD}(f)$ ?
Line 45: Line 48:
 
$ h_{\rm MKD}(t)/\Delta f_{\rm K} \ = \ $ { 0.75 3% }  
 
$ h_{\rm MKD}(t)/\Delta f_{\rm K} \ = \ $ { 0.75 3% }  
  
{Welche der nachfolgenden Aussagen treffen zu?
+
{Welche der folgenden Aussagen treffen zu?
 
|type="[]"}
 
|type="[]"}
 
-$h_{\rm MKD}(t)$ hat äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$.
 
-$h_{\rm MKD}(t)$ hat äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$.

Revision as of 11:41, 8 November 2017

Unsymmetrischer Kanalfrequenzgang

Wir betrachten in dieser Aufgabe ein BPSK–System mit kohärenter Demodulation, das heißt, es gilt

$$s(t) \ = \ z(t) \cdot q(t),$$
$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$

Die hier gewählten Bezeichnungen lehnen sich an das Blockschaltbild im Theorieteil an.

Der Einfluss eines Kanalfrequenzgangs $H_{\rm K}(f)$ lässt sich in einfacher Weise berücksichtigen, wenn man diesen zusammen mit Modulator und Demodulator durch einen gemeinsamen Basisbandfrequenzgang beschreibt:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] .$$

Damit werden

  • Modulator und Demodulator quasi gegeneinander gekürzt,
  • der Bandpasskanal $H_{\rm K}(f)$ in den Tiefpassbereich transformiert.


Die resultierende Übertragungsfunktion $H_{\rm MKD}(f)$ sollte man nicht mit der Tiefpass–Übertragungsfunktion $H_{\rm K, \, TP}(f)$ gemäß der Beschreibung im Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion des Buches „Signaldarstellung” verwechseln, die sich aus $H_{\rm K}(f)$ durch Abschneiden der Anteile bei negativen Frequenzen sowie einer Frequenzverschiebung um $f_{\rm T}$ nach links ergibt. Bei Frequenzgängen muss im Gegensatz zu den Spektralfunktionen auf die Verdoppelung der Anteile bei positiven Frequenzen verzichtet werden.


Hinweise:


Fragebogen

1

Welche Aussagen gelten für die äquivalente Tiefpassfunktion $H_{\rm K, \, TP}(f)$ ?

Es gilt $H_{\rm K, \, TP}(f=0)= 2$.
Es gilt $H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
Es gilt $H_{\rm K, \, TP}(f = –\Delta f_{\rm K}/4) = 0.75$.
Die dazugehörige Zeitfunktion $h_{\rm K, \, TP}(t)$ ist komplex.

2

Welche Aussagen gelten für den Frequenzgang $H_{\rm MKD}(f)$ ?

Es gilt $H_{\rm MKD}(f=0)= 2$.
Es gilt $H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
Es gilt $H_{\rm MKD}(f = –\Delta f_{\rm K}/4) = 0.75$.
Die dazugehörige Zeitfunktion $h_{\rm MKD}(t)$ ist komplex.

3

Berechnen Sie die Zeitfunktion $h_{\rm MKD}(t)$ . Geben Sie den Wert bei $t = 0$ an.

$ h_{\rm MKD}(t)/\Delta f_{\rm K} \ = \ $

4

Welche der folgenden Aussagen treffen zu?

$h_{\rm MKD}(t)$ hat äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$.
$h_{\rm MKD}(t)$ hat äquidistante Nulldurchgänge im Abstand $2/\Delta f_{\rm K}$.


Musterlösung

(1)  Richtig sind die die Aussagen 2, 3 und 4. $H_{\rm K,TP}(f)$ ergibt sich aus $H_{\rm K}(f)$ durch Abschneiden der negativen Frequenzanteile sowie Verschieben um $f_{\rm T}$ nach links. Bei Frequenzgängen wird – im Gegensatz zu Spektren – auf das Verdoppeln der Anteile bei positiven Frequenzen verzichtet. Deshalb gilt:

$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$

Wegen der reellen unsymmetrischen Spektralfunktionen $H_{\rm K,TP}(f)$ ist die Fourierrücktransformierte $h_{\rm K,TP}(t)$ nach dem Zuordnungssatz komplex.

Tiefpassfunktionen für $H_{\rm K}(f)$

(2)  Hier ist nur der dritte Lösungsvorschlag richtig. Die Spektralfunktion $H_{\rm MKD}(f)$ besitzt stets einen geraden Realteil. Demzufolge ist $h_{\rm MKD}(t)$ stets reell. Hätte $H_{\rm K}(f)$ zusätzlich einen um $f_{\rm T}$ ungeraden Imaginärteil, so würde $H_{\rm MKD}(f)$ einen um $f = 0$ ungeraden Imaginärteil aufweisen. Damit wäre $h_{\rm MKD}(t)$ immer noch eine reelle Funktion.

Die Grafik verdeutlicht die Unterschiede zwischen $H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$. Die Anteile von $H_{\rm MKD}(f)$ im Bereich um $\pm 2f_{\rm T}$ müssen nicht weiter beachtet werden.

(3)  $H_{\rm MKD}(f)$ setzt sich additiv aus einem Rechteck und einem Dreieck zusammen, jeweils mit Breite $\delta f_{\rm K}$ und Höhe $0.5$. Daraus folgt:

$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi \cdot \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi \cdot \frac{\Delta f_{\rm K}}{2} \cdot t)$$
$$\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}$$
$$\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$

(4)  Die erste si–Funktion besitzt zwar äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$. Die äquidistanten Nulldurchgänge der gesamten Zeitfunktion $h_{\rm MKD}$ werden aber durch den zweiten Term bestimmt:

$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi/2) = \frac{\Delta f_{\rm K}}{4},$$
$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (2\pi )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi) = 0.$$

Richtig ist der zweite Lösungsvorschlag.