Difference between revisions of "Aufgaben:Exercise 4.06Z: Signal Space Constellations"
Line 58: | Line 58: | ||
{Geben Sie die Fehlerwahrscheinlichkeit für die Variante '''A''' mit $\sigma_n^2 = E$ an. Sie können ${\rm Q}(x)$ entsprechend der Näherung berechnen. | {Geben Sie die Fehlerwahrscheinlichkeit für die Variante '''A''' mit $\sigma_n^2 = E$ an. Sie können ${\rm Q}(x)$ entsprechend der Näherung berechnen. | ||
|type="{}"} | |type="{}"} | ||
− | $p_{\rm S}$ | + | $p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$ |
{Es gelte $N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}$, $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$. Welche Wahrscheinlichkeit ergibt sich für die Variante '''C''' bei gleichwahrscheinlichen Symbolen? | {Es gelte $N_0 = 2 \cdot 10^{\rm –6} \ {\rm W/Hz}$, $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$. Welche Wahrscheinlichkeit ergibt sich für die Variante '''C''' bei gleichwahrscheinlichen Symbolen? | ||
|type="{}"} | |type="{}"} | ||
− | $p_{\rm S}$ | + | $p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$ |
{Welche Fehlerwahrscheinlichkeit ergibt sich bei gleichen Voraussetzungen für die Variante '''B'''? | {Welche Fehlerwahrscheinlichkeit ergibt sich bei gleichen Voraussetzungen für die Variante '''B'''? | ||
|type="{}"} | |type="{}"} | ||
− | $p_{\rm S}$ | + | $p_{\rm S} \ = \ $ { 0.7 3% } $\ \%$ |
{Wie groß ist bei der Variante '''A''' die mittlere Energie pro Symbol ($E_{\rm S}$) zu wählen, um die gleiche Fehlerwahrscheinlichkeit wie bei System '''C''' zu erhalten? | {Wie groß ist bei der Variante '''A''' die mittlere Energie pro Symbol ($E_{\rm S}$) zu wählen, um die gleiche Fehlerwahrscheinlichkeit wie bei System '''C''' zu erhalten? | ||
|type="{}"} | |type="{}"} | ||
− | $E_{\rm S}$ | + | $E_{\rm S} \ = \ $ { 21.5 3% } $\ \cdot 10^{\rm –6} \ \rm Ws$ |
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Die <u>drei erstgenannten Voraussetzungen</u> müssen auf jeden Fall erfüllt sein | + | '''(1)''' Die <u>drei erstgenannten Voraussetzungen</u> müssen auf jeden Fall erfüllt sein: |
+ | *Die Gleichung gilt dann unabhängig von den Auftrittswahrscheinlichkeiten. | ||
+ | *Im Fall ${\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1)$ kann durch eine Verschiebung der Entscheiderschwelle eine kleinere Fehlerwahrscheinlichkeit erzielt werden. | ||
− | '''(2)''' Der Rauscheffektivwert $\sigma_n$ und damit auch die Signalenergie $E = \sigma_n^2$ sind für alle drei betrachteten Varianten gleich. Gleiches gilt für die Distanz der Signalraumpunkte. Für die Variante | + | '''(2)''' Der Rauscheffektivwert $\sigma_n$ und damit auch die Signalenergie $E = \sigma_n^2$ sind für alle drei betrachteten Varianten gleich. Gleiches gilt für die Distanz der Signalraumpunkte. Für die Variante '''A''' gilt zum Beispiel: |
:$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$ | :$$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$ | ||
− | Durch die Verschiebung des Koordinatensystems ändert sich am Absand zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ nichts (Variante | + | Durch die Verschiebung des Koordinatensystems ändert sich am Absand zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ nichts (Variante '''B'''), und auch bei Variante <i>C</i> (nach Drehung) ergibt sich der gleiche Abstand. |
− | Richtig ist also der <u>Lösungsvorschlag 4</u> | + | Richtig ist also der <u>Lösungsvorschlag 4</u>: |
+ | *Durch eine Drehung des Koordinatensystems kann man bei einem Binärsystem $(M = 2)$ stets mit einer Basisfunktion $(N = 1)$ auskommen. | ||
+ | *Da das zweidimensionale Rauschen zirkulär symmetrisch ist ⇒ gleiche Streuung $\sigma_n$ in alle Richtungen, kann auch der Rauschterm wie im Kapitel [[Digitalsignal%C3%BCbertragung/Fehlerwahrscheinlichkeit_bei_Basisband%C3%BCbertragung|Fehlerwahrscheinlichkeit bei Basisbandübertragung]] eindimensional beschrieben werden. | ||
− | '''(3)''' Für alle hier betrachteten Varianten, also auch für die Variante | + | '''(3)''' Für alle hier betrachteten Varianten, also auch für die Variante '''A''', gilt: |
:$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) | :$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) | ||
= {\rm Q}(2.5)\hspace{0.05cm}.$$ | = {\rm Q}(2.5)\hspace{0.05cm}.$$ | ||
Mit der angegebenen Näherung erhält man | Mit der angegebenen Näherung erhält man | ||
− | :$$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \ | + | :$$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$ |
− | + | '''(4)''' Bei der Variante '''C''' ergibt sich für die mittlere Energie pro Symbol: | |
− | '''(4)''' Bei der Variante | ||
:$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + | :$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + | ||
− | {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = | + | {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = |
− | |||
\left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$ | \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$ | ||
:$$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} | :$$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} | ||
Line 104: | Line 106: | ||
Setzt man dieses Ergebnis in die unter (3) gefundene Gleichung ein, so erhält man mit $\sigma_n^2 = N_0/2$: | Setzt man dieses Ergebnis in die unter (3) gefundene Gleichung ein, so erhält man mit $\sigma_n^2 = N_0/2$: | ||
:$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) | :$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) | ||
− | = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) = | + | = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) |
− | + | ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. $$ | |
− | ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \ | ||
+ | '''(5)''' Durch Drehung des Koordinatensystems ändert sich nichts an den Energieverhältnissen. Deshalb erhält man wieder $p_{\rm S} \ \underline {\approx 0.7\%}$. | ||
− | |||
− | + | '''(6)''' Bei der Variante '''A''' ist die mittlere Energie pro Symbol | |
− | '''(6)''' Bei der Variante | ||
:$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E | :$$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E | ||
\hspace{0.05cm}. $$ | \hspace{0.05cm}. $$ | ||
Line 118: | Line 118: | ||
Der Abstand von der Schwelle, die bei gleichwahrscheinlichen Symbolen in der Mitte zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ liegen sollte, ist wie bei den anderen Varianten $d/2 = 2.5 \cdot E^{\rm 1/2}$. Mit $\sigma_n^2 = N_0/2$ erhält man somit die Bestimmungsgleichung: | Der Abstand von der Schwelle, die bei gleichwahrscheinlichen Symbolen in der Mitte zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ liegen sollte, ist wie bei den anderen Varianten $d/2 = 2.5 \cdot E^{\rm 1/2}$. Mit $\sigma_n^2 = N_0/2$ erhält man somit die Bestimmungsgleichung: | ||
:$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) | :$$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) | ||
− | ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} | + | ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 | |
\hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$ | \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$ | ||
:$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$ | :$$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$ | ||
− | Das bedeutet: Bei der Variante | + | Das bedeutet: Bei der Variante '''A''' ist gegenüber den beiden anderen Symbolen eine um den Faktor $3.44$ größere mittlere Symbolenergie $E_{\rm S}$ erforderlich, um die gleiche Fehlerwahrscheinlichkeit $p_{\rm S} = 0.7%$ zu erzielen. |
− | + | *Das heißt: Diese Signalraumkonstellation ist sehr ungünstig. Es ergibt sich ein sehr großes $E_{\rm S}$, ohne dass gleichzeitig der Abstand $d$ vergrößert wird. | |
− | Mit $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$ würde sich dagegen $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ ergeben. Das heißt: Die Fehlerwahrscheinlichkeit würde um mehr als eine Zehnerpotenz größer. | + | *Mit $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$ würde sich dagegen $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ ergeben. Das heißt: Die Fehlerwahrscheinlichkeit würde um mehr als eine Zehnerpotenz größer. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 13:40, 14 November 2017
Die (mittlere) Fehlerwahrscheinlichkeit eines optimalen Binärsystems lautet:
- $$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )\hspace{0.05cm}.$$
Hierzu ist anzumerken:
- ${\rm Q}(x)$ bezeichnet die komplementäre Gaußsche Fehlerfunktion (Definition und Approximation):
- $${\rm Q}(x) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} {\rm e}^{-u^2/2} \,{\rm d} u \approx \frac{1}{\sqrt{2\pi} \cdot x} \cdot {\rm e}^{-x^2/2} \hspace{0.05cm}.$$
- $d$ gibt den Abstand der beiden Sendesignalpunkte $s_0$ und $s_1$ im Vektorraum an:
- $$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} \hspace{0.05cm}.$$
- $\sigma_n^2$ ist die Varianz des AWGN–Rauschens nach dem Detektor, der zum Beispiel als Matched–Filter realisiert sein kann. Es gelte $\sigma_n^2 = N_0/2$.
Durch die Grafik sind drei unterschiedliche Signalraumkonstellationen gegeben, nämlich
- Variante A : $s_0 = (+1, \, +5), \hspace{0.4cm} s_1 = (+4, \, +1)$,
- Variante B : $s_0 = (-1.5, \, +2), \, s_1 = (+1.5, \, -2)$,
- Variante C : $s_0 = (-2.5, \, 0), \hspace{0.45cm} s_1 = (+2.5, \, 0)$.
Die jeweils mittlere Energie pro Symbol ($E_{\rm S}$) kann wie folgt berechnet werden:
- $$E_{\rm S} = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot || \boldsymbol{ s }_0||^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot || \boldsymbol{ s }_1||^2\hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Approximation der Fehlerwahrscheinlichkeit.
- Für numerische Berechnungen kann zur Vereinfachung die Energie $E = 1$ gesetzt werden.
- Wenn keine anderslautende Angabe gemacht ist, so kann von gleichwahrscheinlichen Symbolen ausgegangen werden: ${\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) = {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) = 0.5\hspace{0.05cm}.$
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Die Gleichung gilt dann unabhängig von den Auftrittswahrscheinlichkeiten.
- Im Fall ${\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_0) ≠ {\rm Pr}(\boldsymbol{s} = \boldsymbol{s}_1)$ kann durch eine Verschiebung der Entscheiderschwelle eine kleinere Fehlerwahrscheinlichkeit erzielt werden.
(2) Der Rauscheffektivwert $\sigma_n$ und damit auch die Signalenergie $E = \sigma_n^2$ sind für alle drei betrachteten Varianten gleich. Gleiches gilt für die Distanz der Signalraumpunkte. Für die Variante A gilt zum Beispiel:
- $$d = \sqrt{ || \boldsymbol{ s }_1 - \boldsymbol{ s }_0||^2} = \sqrt{ E \cdot (4-1)^2 + E \cdot (1-5)^2} = 5 \cdot \sqrt{E}\hspace{0.05cm}.$$
Durch die Verschiebung des Koordinatensystems ändert sich am Absand zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ nichts (Variante B), und auch bei Variante C (nach Drehung) ergibt sich der gleiche Abstand.
Richtig ist also der Lösungsvorschlag 4:
- Durch eine Drehung des Koordinatensystems kann man bei einem Binärsystem $(M = 2)$ stets mit einer Basisfunktion $(N = 1)$ auskommen.
- Da das zweidimensionale Rauschen zirkulär symmetrisch ist ⇒ gleiche Streuung $\sigma_n$ in alle Richtungen, kann auch der Rauschterm wie im Kapitel Fehlerwahrscheinlichkeit bei Basisbandübertragung eindimensional beschrieben werden.
(3) Für alle hier betrachteten Varianten, also auch für die Variante A, gilt:
- $$p_{\rm S} = {\rm Pr}({ \cal E} ) = {\rm Q} \left ( \frac{d/2}{\sigma_n} \right )= {\rm Q} \left ( \frac{5/2 \cdot \sqrt{E}}{\sigma_n} \right ) = {\rm Q}(2.5)\hspace{0.05cm}.$$
Mit der angegebenen Näherung erhält man
- $$p_{\rm S} = \frac{1}{\sqrt{2\pi} \cdot 2.5} \cdot {\rm e}^{-2.5^2/2} \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}.$$
(4) Bei der Variante C ergibt sich für die mittlere Energie pro Symbol:
- $$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \cdot (-2.5 \cdot \sqrt{E})^2 + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_1) \cdot (+ 2.5 \cdot \sqrt{E})^2 = \left [ {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) + {\rm Pr}(\boldsymbol{ s } = \boldsymbol{ s }_0) \right ] \cdot 6.25 \cdot E = 6.25 \cdot E$$
- $$\Rightarrow \hspace{0.3cm} E = \frac {E_{\rm S}}{6.25} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{E}= \frac {\sqrt{E_{\rm S}}}{2.5} \hspace{0.05cm}.$$
Setzt man dieses Ergebnis in die unter (3) gefundene Gleichung ein, so erhält man mit $\sigma_n^2 = N_0/2$:
- $$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Q} \left ( \frac{2.5 \cdot \sqrt{E}}{\sigma_n} \right )= {\rm Q} \left ( \frac{ \sqrt{E_{\rm S}}}{\sigma_n} \right ) = {\rm Q} \left ( \frac{ \sqrt{2 \cdot E_{\rm S}}}{N_0} \right ) ={\rm Q} \left ( \sqrt{\frac{ 2 \cdot 6.25 \cdot 10^{-6}\,{\rm Ws}}{2 \cdot 10^{-6}\,{\rm W/Hz}}} \right ) ={\rm Q}(2.5) \hspace{0.1cm} \hspace{0.15cm}\underline {\approx 0.7 \%}\hspace{0.05cm}. $$
(5) Durch Drehung des Koordinatensystems ändert sich nichts an den Energieverhältnissen. Deshalb erhält man wieder $p_{\rm S} \ \underline {\approx 0.7\%}$.
(6) Bei der Variante A ist die mittlere Energie pro Symbol
- $$E_{\rm S} = {1}/{2} \cdot \left [ (1^2 + 5^2) \cdot E + (4^2 + 1^2) \cdot E \right ] = 21.5 \cdot E \hspace{0.05cm}. $$
Der Abstand von der Schwelle, die bei gleichwahrscheinlichen Symbolen in der Mitte zwischen $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ liegen sollte, ist wie bei den anderen Varianten $d/2 = 2.5 \cdot E^{\rm 1/2}$. Mit $\sigma_n^2 = N_0/2$ erhält man somit die Bestimmungsgleichung:
- $$p_{\rm S} = {\rm Q} \left ( \frac{ 2.5 \cdot \sqrt{E}}{\sqrt{N_0/2}} \right ) ={\rm Q}(2.5)\approx 0.7 \cdot 10^{-2} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sqrt{\frac {2E}{N_0}} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac {E}{N_0} = 0.5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\frac {E_{\rm S}}{21.5 \cdot N_0} = 0.5$$
- $$\Rightarrow \hspace{0.3cm} {E_{\rm S}} = 0.5 \cdot {21.5 \cdot N_0} \hspace{0.1cm} \hspace{0.15cm}\underline { = 21.5 \cdot 10^{-6}\,{\rm Ws}}\hspace{0.05cm}.$$
Das bedeutet: Bei der Variante A ist gegenüber den beiden anderen Symbolen eine um den Faktor $3.44$ größere mittlere Symbolenergie $E_{\rm S}$ erforderlich, um die gleiche Fehlerwahrscheinlichkeit $p_{\rm S} = 0.7%$ zu erzielen.
- Das heißt: Diese Signalraumkonstellation ist sehr ungünstig. Es ergibt sich ein sehr großes $E_{\rm S}$, ohne dass gleichzeitig der Abstand $d$ vergrößert wird.
- Mit $E_{\rm S} = 6.25 \cdot 10^{\rm –6} \ \rm Ws$ würde sich dagegen $p_{\rm S} = {\rm Q}(2.5/3.44^{\rm 1/2}) \approx {\rm Q}(1.35) \approx 9\%$ ergeben. Das heißt: Die Fehlerwahrscheinlichkeit würde um mehr als eine Zehnerpotenz größer.