Difference between revisions of "Aufgaben:Exercise 5.7Z: McCullough Model once more"

From LNTwww
Line 32: Line 32:
 
* Aus den oben genannten Aufgaben können folgende Ergebnisse weiterverwendet werden:
 
* Aus den oben genannten Aufgaben können folgende Ergebnisse weiterverwendet werden:
  
# * Die Zustandswahrscheinlichkeiten des GE–Modells sind
+
** Die Zustandswahrscheinlichkeiten des GE–Modells sind
 
:$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm
 
:$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm
 
G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm
 
B\hspace{0.05cm}|\hspace{0.05cm} G)}
 
B\hspace{0.05cm}|\hspace{0.05cm} G)}
 
\hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G
 
\hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G
}\hspace{0.05cm}.$$
+
}\hspace{0.05cm}.$$  
  
# * Die mittlere Fehlerwahrscheinlichkeit des GE–Modells beträgt
+
** Die mittlere Fehlerwahrscheinlichkeit des GE–Modells beträgt
 
:$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}
 
:$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B}
= \varphi_{e}(k = 0 )\hspace{0.05cm}.$$
+
= \varphi_{e}(k = 0 )\hspace{0.05cm}.$$  
  
# * Die Korrelationsdauer des GE–Modells berechnet sich zu
+
 
 +
** Die Korrelationsdauer des GE–Modells berechnet sich zu
 
:$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm}
 
:$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm}
 
B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1
 
B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1
\hspace{0.05cm}.$$
+
\hspace{0.05cm}.$$  
  
  

Revision as of 18:10, 14 November 2017

Fehlerabstandsverteilung und -korrelationsfunktion von GE–Modell und äquivalentem MC-Modell

Wir betrachten wie auch in den Aufgaben A5.6, Z5.6 und A5.7 das Bündelfehler–Kanalmodell nach Gilbert und Elliott (GE–Modell) mit den Kenngrößen

$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,$$
$$ p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$

Aus diesen vier Wahrscheinlichkeiten lassen sich die entsprechenden Kenngrößen des Kanalmodells nach McCullough (MC–Modell) so ermitteln, dass beide Modelle die genau gleichen statistischen Eigenschaften besitzen, nämlich

  • exakt gleiche Fehlerabstandsverteilung $V_a(k)$,
  • exakt gleiche Fehlerkorrelationsfunktion $\varphi_e(k)$.


Die Wahrscheinlichkeiten des MC–Modells wurden in der Aufgabe A5.7 wie folgt ermittelt (Bezeichnungen entsprechend der Grafik zur Aufgabe A5.7, alle mit „$q$” anstelle von „$p$”):

$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.0061, \hspace{0.2cm}q_{\rm B} = 0.1949,$$
$$ q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5528, \hspace{0.2cm} q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.3724\hspace{0.05cm}.$$

Die obere Grafik zeigt die aus $N = 10^6$ Folgenelementen simulativ ermittelten Funktionen $V_a(k)$ und $\varphi_e(k)$ für das GE– und das MC–Modell. Hier ergeben sich noch leichte Abweichungen. Im Grenzfall für $N → ∞$ stimmen dagegen Fehlerkorrelationsfunktion und Fehlerabstandsverteilung beider Modelle exakt überein.

In dieser Aufgabe sollen nun wichtige Beschreibungsgrößen wie Zustandswahrscheinlichkeiten, mittlere Fehlerwahrscheinlichkeiten und Korrelationsdauer direkt aus den $q$–Parametern des MC–Modells ermittelt werden.

Hinweis:

  • Die Aufgabe gehört zum Themengebiet von Kapitel 5.3.
  • Aus den oben genannten Aufgaben können folgende Ergebnisse weiterverwendet werden:
    • Die Zustandswahrscheinlichkeiten des GE–Modells sind
$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} \hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G }\hspace{0.05cm}.$$
    • Die mittlere Fehlerwahrscheinlichkeit des GE–Modells beträgt
$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B} = \varphi_{e}(k = 0 )\hspace{0.05cm}.$$


    • Die Korrelationsdauer des GE–Modells berechnet sich zu
$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 \hspace{0.05cm}.$$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)