Difference between revisions of "Aufgaben:Exercise 3.1: Analysis of a Convolutional Encoder"

From LNTwww
Line 16: Line 16:
 
* die Anzahl $n$ der pro Codierschritt ausgegebenen Codebits,
 
* die Anzahl $n$ der pro Codierschritt ausgegebenen Codebits,
 
* die Gedächtnisordnung (oder kurz: das Gedächtnis) $m$,
 
* die Gedächtnisordnung (oder kurz: das Gedächtnis) $m$,
* die Gesamteinflusslänge (oder kurz: Einflusslänge) $\nu$ $v$.
+
* die Gesamteinflusslänge (oder kurz: Einflusslänge) $\nu$.
  
  

Revision as of 19:07, 21 November 2017

Vorgegebener Faltungscodierer

Wir betrachten den nebenstehenden Faltungscodierer und gehen von folgender Informationssequenz:

$$\underline{\it u} = \big( 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm}... \big )\hspace{0.05cm}.$$

Diese Sequenz wird auf drei Stränge aufgeteilt:

$$\underline{\it u}^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( 0,\hspace{0.05cm} 1,\hspace{0.05cm} 1,\hspace{0.05cm} ... \big )\hspace{0.05cm},$$
$$\underline{\it u}^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \big( 1,\hspace{0.05cm} 1,\hspace{0.05cm} 0,\hspace{0.05cm} ... \big )\hspace{0.05cm},$$
$$\underline{\it u}^{(3)} \hspace{-0.15cm} \ = \hspace{-0.15cm} \big( 1,\hspace{0.05cm} 0,\hspace{0.05cm} 1,\hspace{0.05cm} ... \big )\hspace{0.05cm}.$$

Die zum Zeitpunkt $i$ am Coder anliegenden Bits werden mit $u_i^{\rm (1)}$, $u_i^{\rm (2)}$ und $u_i^{\rm (3)}$ bezeichnet. Beispielsweise gilt $u_1^{\rm (1)} = 0$, $u_2^{\rm (2)} = 1$ sowie $u_3^{\rm (3)} = 1$.

In dieser Aufgabe sollen ermittelt werden:

  • die Anzahl $k$ der pro Codierschritt verarbeiteten Informationsbits,
  • die Anzahl $n$ der pro Codierschritt ausgegebenen Codebits,
  • die Gedächtnisordnung (oder kurz: das Gedächtnis) $m$,
  • die Gesamteinflusslänge (oder kurz: Einflusslänge) $\nu$.


Außerdem sollen Sie für die angegebene Informationssequenz $\underline {u}$ die Codesymbole $x_i^{(1)}$, $x_i^{(2)}$, $x_i^{(3)}$, $x_i^{(4)}$ für die Taktzeitpunkte $i = 1$ und $i = 3$ bestimmen. Dabei ist vorauszusetzen, dass alle Speicherelemente zu Beginn mit Nullen belegt waren.

Hinweise:

  • Die Aufg.asdöjalf


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)