Difference between revisions of "Aufgaben:Exercise 4.6Z: Basics of Product Codes"

From LNTwww
Line 12: Line 12:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Welche Aussagen erlaubt die Generatormatrix $\mathbf{G}_1$ über den Code $C_1$?
 
|type="[]"}
 
|type="[]"}
+ correct
+
+ Die Coderate von $C_1$ ist $R_1 = 4/7$.
- false
+
+ Der Code $C_1$ ist systematisch.
 +
- $C_1$ ist ein verkürzter Hamming&ndash;Code.
 +
+ Die minimale Distanz dieses Codes ist $d_1 = 3$.
  
{Input-Box Frage
+
{Welche Aussagen erlaubt die Generatormatrix $\mathbf{G}_2$ über den Code $C_2$?
 +
|type="[]"}
 +
- Die Coderate von $C_2$ ist $R_2 = 4/7$.
 +
+ Der Code $C_2$ ist systematisch.
 +
+ $C_2$ ist ein verkürzter Hamming&ndash;Code.
 +
* Die minimale Distanz dieses Codes ist $d_2 = 3$.
 +
 
 +
{Geben Sie die Parameter des Produktcodes $C = C_1 &times C_2$ an.
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$k \ = \ ${ 12 3% }
 +
$n \ = \ ${ 42 3% }
 +
$d \ = \ ${ 9 3% }
 +
$R \ = \ ${ 0.286 3% }
 
</quiz>
 
</quiz>
  

Revision as of 11:44, 10 December 2017

Generatormatrizen der Komponentencodes

Wir betrachten hier einen Produktcode entsprechend der Beschreibung auf der ersten Theorieseite. Die beiden Komponentencodes $C_1$ und $C_2$ sind durch die rechts angegebenen Generatormatrizen $\mathbf{G}_1$ und $\mathbf{G}_2$ festgelegt.

Hinweise:


Fragebogen

1

Welche Aussagen erlaubt die Generatormatrix $\mathbf{G}_1$ über den Code $C_1$?

Die Coderate von $C_1$ ist $R_1 = 4/7$.
Der Code $C_1$ ist systematisch.
$C_1$ ist ein verkürzter Hamming–Code.
Die minimale Distanz dieses Codes ist $d_1 = 3$.

2

Welche Aussagen erlaubt die Generatormatrix $\mathbf{G}_2$ über den Code $C_2$?

Die Coderate von $C_2$ ist $R_2 = 4/7$.
Der Code $C_2$ ist systematisch.
$C_2$ ist ein verkürzter Hamming–Code.

3

Geben Sie die Parameter des Produktcodes $C = C_1 × C_2$ an.

$k \ = \ $

$n \ = \ $

$d \ = \ $

$R \ = \ $


Musterlösung

(1)  (2)  (3)  (4)  (5)