Difference between revisions of "Aufgaben:Exercise 3.10: Metric Calculation"

From LNTwww
Line 64: Line 64:
 
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
 
:$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
+
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
 
:$${\it \Gamma}_5(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
+
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
 
:$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
 
:$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
+
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
 
Die linke Grafik zeigt das endgültig ausgewertete ${\it \Gamma}_i(S_{\mu})$–Trellis.
 
Die linke Grafik zeigt das endgültig ausgewertete ${\it \Gamma}_i(S_{\mu})$–Trellis.
Line 77: Line 77:
 
'''(2)'''  Zum Zeitpunk $i = 6$ ist bereits die Terminierung wirksam und es gibt nur noch zwei Fehlergrößen. Für diese erhält man mit $\underline{y}_6 = (01)$:
 
'''(2)'''  Zum Zeitpunk $i = 6$ ist bereits die Terminierung wirksam und es gibt nur noch zwei Fehlergrößen. Für diese erhält man mit $\underline{y}_6 = (01)$:
 
:$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
 
:$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
+
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
 
:$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
 
:$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
+
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
  
 
'''(3)'''  Der Endwert ergibt sich zu  
 
'''(3)'''  Der Endwert ergibt sich zu  
 
:$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] =$$
 
:$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] =$$
:$$\ = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
+
:$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$
  
 
Beim BSC&ndash;Modell kann aus ${\it \Gamma}_7(S_{\mu}) = 3$ darauf geschlossen werden, dass drei Übertragungsfehler aufgetreten sind &nbsp;&#8658;&nbsp; <u>Lösungsvorschläge 1 und 3</u>.
 
Beim BSC&ndash;Modell kann aus ${\it \Gamma}_7(S_{\mu}) = 3$ darauf geschlossen werden, dass drei Übertragungsfehler aufgetreten sind &nbsp;&#8658;&nbsp; <u>Lösungsvorschläge 1 und 3</u>.

Revision as of 15:50, 16 December 2017

Nur teilweise ausgewertetes Trellis

Im Theorieteil zu diesem Kapitel wurde die Berechnung der Fehlergrößen ${\it \Gamma}_i(S_{\mu})$ ausführlich behandelt, die auf der Hamming–Distanz $d_{\rm H}(\underline{x}', \ \underline{y}_i)$ zwischen den möglichen Codeworten $\underline{x}' ∈ \{00, \, 01, \, 10, \, 11\}$ und den zu dem Zeitpunkt $i$ empfangenen 2–Bit–Worten $\underline{y}_i$ basiert.

Die Aufgabe beschäftigt sich genau mit dieser Thematik. In nebenstehender Grafik

  • ist das betrachtete Trellis dargestellt – gültig für den Code mit Rate $R = 1/2$, Gedächtnis $m = 2$ sowie $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$,
  • sind die Empfangsworte $\underline{y}_1 = (01), \ ... \ , \ \underline{y}_7 = (11)$ in den Rechtecken angegeben,
  • sind bereits alle Fehlergrößen ${\it \Gamma}_0(S_{\mu}), \ ... \ , \ {\it \Gamma}_4(S_{\mu})$ eingetragen.


Beispielsweise ergibt sich die Fehlergröße ${\it \Gamma}_4(S_0)$ mit $\underline{y}_4 = (01)$ als das Minimum der beiden Vergleichswerte

  • ${\it \Gamma}_3(S_0) + d_{\rm H}((00), \ (01)) = 3 + 1 = 4$, und
  • ${\it \Gamma}_3(S_2) + d_{\rm H}((11), \ (01)) = 2 + 1 = 3$.


Der überlebende Zweig – hier von ${\it \Gamma}_3(S_2)$ nach ${\it \Gamma}_4(S_0)$ – ist durchgezogen gezeichnet, der eliminierte Zweig von ${\it \Gamma}_3(S_0)$ nach ${\it \Gamma}_4(S_0)$ punktiert. Rote Pfeile stehen für das Informationsbit $u_i = 0$, blaue Pfeile für $u_i = 1$.

In der Teilaufgabe (4) soll der Zusammenhang zwischen ${\it \Gamma}_i(S_{\mu})$–Minimierung und ${\it \Lambda}_i(S_{\mu})$–Maximierung herausgearbeitet werden. Hierbei bezeichnet man die Knoten ${\it \Lambda}_i(S_{\mu})$ als Metriken, wobei sich der Metrikzuwachs gegenüber den Vorgängerknoten aus dem Korrelationswert $〈\underline{x}_i', \, \underline{y}_i 〉$ ergibt. Näheres zu dieser Thematik finden Sie auf den folgenden Theorieseiten:


Hinweise:

  • Die Aufgabe bezieht sich auf das Kapitel Decodierung von Faltungscodes.
  • Vorerst nicht betrachtet wird die Suche der überlebenden Pfade. Damit beschäftigt sich für das gleiche Beispiel die nachfolgende Aufgabe A3.11.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.



Fragebogen

1

Wie lauten die Fehlergrößen für den Zeitpunkt $i = 5$?

${\it \Gamma}_5(S_0) \ = \ $

${\it \Gamma}_5(S_1) \ = \ $

${\it \Gamma}_5(S_2) \ = \ $

${\it \Gamma}_5(S_3) \ = \ $

2

Wie lauten die Fehlergrößen für den Zeitpunkt $i = 6$?

${\it \Gamma}_6(S_0) \ = \ $

${\it \Gamma}_6(S_2) \ = \ $

3

Welcher Endwert ergibt sich bei diesem Trellis, basierend auf ${\it \Gamma}_i(S_{\mu})$?

Es gilt ${\it \Gamma}_7(S_0) = 3$.
Der Endwert lässt auf eine fehlerfreie Übertragung schließen.
Der Endwert lässt auf drei Übertragungsfehler schließen.

4

Welche Aussagen sind für die ${\it \Lambda}_i(S_{\mu})$–Auswertung zutreffend?

Die Metriken ${\it \Lambda}_i(S_{\mu})$ liefern gleiche Informationen wie ${\it \Gamma}_i(S_{\mu})$.
Für alle Knoten gilt ${\it \Lambda}_i(S_{\mu}) = 2 \cdot [i \, –{\it \Gamma}_i(S_{\mu})$.
Für die Metrikzuwächse gilt $〈 \underline{x}_i', \, \underline{y}_i 〉 ∈ \{0, \, 1, \, 2\}$.


Musterlösung

(1)  Bei allen Knoten $S_{\mu}$ muss eine Entscheidung zwischen den beiden ankommenden Zweigen getroffen werden. Ausgewählt wird dann jeweils der Zweig, der zur (minimalen) Fehlergröße ${\it \Gamma}_5(S_{\mu})$ geführt hat. Mit $\underline{y}_5 = (01)$ erhält man:

$${\it \Gamma}_5(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_1) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_0) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_2) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 2+0 \right ] \hspace{0.15cm}\underline{= 2}\hspace{0.05cm},$$
$${\it \Gamma}_5(S_3) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{4}(S_1) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{4}(S_3) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+0\hspace{0.05cm},\hspace{0.05cm} 2+2 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

Die linke Grafik zeigt das endgültig ausgewertete ${\it \Gamma}_i(S_{\mu})$–Trellis.

Ausgewertete Trellisdiagramme


(2)  Zum Zeitpunk $i = 6$ ist bereits die Terminierung wirksam und es gibt nur noch zwei Fehlergrößen. Für diese erhält man mit $\underline{y}_6 = (01)$:

$${\it \Gamma}_6(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+1\hspace{0.05cm},\hspace{0.05cm} 2+1 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm},$$
$${\it \Gamma}_6(S_2) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{5}(S_1) + d_{\rm H} \big ((10)\hspace{0.05cm},\hspace{0.05cm} (01) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{5}(S_3) + d_{\rm H} \big ((01)\hspace{0.05cm},\hspace{0.05cm} (01) \big ) \right ] =$$
$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$


(3)  Der Endwert ergibt sich zu

$${\it \Gamma}_7(S_0) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}{\rm min} \left [{\it \Gamma}_{6}(S_0) + d_{\rm H} \big ((00)\hspace{0.05cm},\hspace{0.05cm} (11) \big )\hspace{0.05cm},\hspace{0.2cm}{\it \Gamma}_{6}(S_2) + d_{\rm H} \big ((11)\hspace{0.05cm},\hspace{0.05cm} (11) \big ) \right ] =$$
$$\hspace{1.375cm} = \ \hspace{-0.15cm} {\rm min} \left [ 3+2\hspace{0.05cm},\hspace{0.05cm} 3+0 \right ] \hspace{0.15cm}\underline{= 3}\hspace{0.05cm}.$$

Beim BSC–Modell kann aus ${\it \Gamma}_7(S_{\mu}) = 3$ darauf geschlossen werden, dass drei Übertragungsfehler aufgetreten sind  ⇒  Lösungsvorschläge 1 und 3.


(4)  Richtig sind die Aussagen 1 und 2. Die Maximierung der Metriken ${\it \Gamma}_i(S_{\mu})$ entsprechend der rechten Grafik liefert das gleiche Ergebnis wie die links dargestellte Minimierung der Fehlergrößen ${\it \Gamma}_i(S_{\mu})$. Auch die überlebenden und gestrichenen Zweige sind in beiden Grafiken identisch.

Die angegebene Gleichung ist ebenfalls richtig, was hier nur am Beispiel $i = 7$ gezeigt wird:

$${\it \Lambda}_7(S_0)) = 2 \cdot \left [i - {\it \Gamma}_7(S_0) \right ] = 2 \cdot \left [7 - 3 \right ] \hspace{0.15cm}\underline{= 8}\hspace{0.05cm}.$$

Die letzte Aussage ist falsch. Vielmehr gilt $〈x_i', \, y_i〉 ∈ \{–2, \, 0, \, +2\}$.

Hinweis: In der Aufgabe A3.11 wird für das gleiche Beispiel die Pfadsuche demonstiert, wobei von den ${\it \Lambda}_i(S_{\mu})$–Metriken entsprechend der rechten Grafik ausgegangen wird.