Difference between revisions of "Aufgaben:Exercise 2.11Z: Erasure Channel for Symbols"
Line 53: | Line 53: | ||
− | '''(3)''' Der $\rm RSC \, (255, \, 223, \, 33)_{256}$ basiert auf dem Galoisfeld $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = 8$. Das Ergebnis der Teilaufgabe (2) muss nun an diesen Fall angepasst werden. Für den $8$–BEC gilt: | + | '''(3)''' Der $\rm RSC \, (255, \, 223, \, 33)_{256}$ basiert auf dem Galoisfeld $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$. Das Ergebnis der Teilaufgabe (2) muss nun an diesen Fall angepasst werden. Für den $8$–BEC gilt: |
:$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | :$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} | ||
\lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 0.832}\hspace{0.05cm}. $$ | \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 0.832}\hspace{0.05cm}. $$ |
Revision as of 11:15, 17 December 2017
Das Kanalmodell Binary Erasure Channel (BEC) beschreibt einen Auslöschungskanal auf Bitebene. Ein Binärsymbol $0$ bzw. $1$ wird mit der Wahrscheinlichkeit $1 - \lambda$ richtig übertragen und mit der Wahrscheinlichkeit $\lambda$ als Auslöschung $\rm E$ (Erasure) markiert. Im Gegensatz zum BSC kann es hier nicht zu Verfälschungen $(0 → 1, \ 1 → 0)$ kommen.
Ein Reed–Solomon–Code basiert auf einem Galoisfeld ${\rm GF}(2^m)$ mit ganzzahligem $m$. Jedes Codesymbol $c$ lässt sich somit durch $m \ \rm Bit$ darstellen. Will man hier das BEC–Modell anwenden, so muss man dieses zum m–BEC–Modell modifizieren, wie es in der unteren Grafik für $m = 2$ gezeigt ist:
Alle Codesymbole – in binärer Darstellung $00, \ 01, \ 10$ und $11$ – werden mit der Wahrscheinlichkeit $1 - \lambda_2$ richtig übertragen. Damit beträgt die Wahrscheinlichkeit für ein ausgelöschtes Symbol $\lambda_2$. Zu beachten ist, dass bereits ein einziges ausgelöschtes Bit zum ausgelöschten Empfangssymbol $y = \rm E$ führt.
Hinweise:
- Die Aufgabe gehört zum Kapitel Reed–Solomon–Decodierung beim Auslöschungskanal.
- Bei einem auf ${\rm GF}(2^m)$ basierenden Code ist das skizzierte 2–BEC–Modell zum $m$–BEC zu erweitern. Die Auslöschungswahrscheinlichkeit dieses Modell wird dann mit $\lambda_m$ bezeichnet.
- Für die Teilaufgaben (1), (2) und (3) gelte für die Auslöschungswahrscheinlichkeit des Grundmodells gemäß der oberen Grafik stets $\lambda = 0.2$.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Ohne Einschränkung der Allgemeingültigkeit gehen wir zur Lösung dieser Aufgabe vom Codesymbol $c_{\rm binär} = $ „$00$” aus. Entsprechend dem 2–BEC–Modell kann dann das Empfangssymbol $y_{\rm binär}$ entweder „$00$” oder ausgelöscht $(\rm E)$ sein und es gilt:
- $${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2$$
- $$\Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 0.36}\hspace{0.05cm}. $$
Es ist vorausgesetzt, dass ein Erasure nur vermieden wird, wenn keines der zwei Bit ausgelöscht wurde.
(3) Der $\rm RSC \, (255, \, 223, \, 33)_{256}$ basiert auf dem Galoisfeld $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$. Das Ergebnis der Teilaufgabe (2) muss nun an diesen Fall angepasst werden. Für den $8$–BEC gilt:
- $$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 0.832}\hspace{0.05cm}. $$
(4) Aus der Bedingung $\lambda_m ≤ 0.2$ folgt dorelt $1 - \lambda_m ≥ 0.8$. Daraus folgt weiter:
- $$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} \underline{\le 0.0275}\hspace{0.05cm}.$$
(5) Mit $\lambda = 0.0275 \ \Rightarrow \ \lambda_m = 0.2$ sind $20\%$ der Empfangssymbole Erasures. Die anderen $2^8 = 256$ Empfangssymbole „$00000000$” $...$ „$11111111$” sind alle gleichwahrscheinlich. Daraus folgt:
- $${\rm Pr}(y_{\rm bin} = "00000000") = \hspace{0.05cm}... \hspace{0.05cm}= {\rm Pr}(y_{\rm bin} = "11111111" )= \frac{0.8}{256} \hspace{0.15cm}\underline{= 0.003125}\hspace{0.05cm}.$$