Difference between revisions of "Aufgaben:Exercise 1.4: Maximum Likelihood Decision"

From LNTwww
(No difference)

Revision as of 18:29, 1 January 2018

Modell zur Maximum–Likelihood–Decodierung

Wir betrachten das digitale Übertragungssystem entsprechend der Grafik. Berücksichtigt sind dabei:

  • ein systematischer (5, 2)–Blockcode $\mathcal{C}$ mit den Codeworten
$$\underline{x}_{0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 0, 0, 0, 0) \hspace{0.05cm},$$ $$\underline{x}_{1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 1, 0, 1, 0) \hspace{0.05cm},$$ $$\underline{x}_{2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 0, 1, 0, 1) \hspace{0.05cm},$$ $$\underline{x}_{3} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 1, 1, 1, 1) \hspace{0.05cm};$$
  • ein digitales (binäres) Kanalmodell, das den Vektor $\underline{x} \in {\rm GF} (2^{5})$ in den Vektor $\underline{y} \in {\rm GF} (2^{5})$ verfälscht;
  • ein Maximum–Likelihood–Decoder mit der Entscheidungsregel
$$\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}|\hspace{0.05cm} \underline{y} ) = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}).$$

In der Gleichung bezeichnet $d_{\rm H} (\underline{y}, \ \underline{x_{i}})$ die Hamming–Distanz zwischen Empfangswort $\underline{y}$ und dem (möglicherweise) gesendeten Codewort $\underline{x_{i}}$.


Hinweise:


Fragebogen

1

Es sei $\underline{y} = (1, 0, 0, 0, 1)$. Welche Entscheidungen erfüllen das ML–Kriterium?

$\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
$\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
$\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
$\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.

2

Es sei $\underline{y} = (0, 0, 0, 1, 0)$. Welche Entscheidungen erfüllen das ML–Kriterium?

$\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
$\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
$\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
$\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.

3

Welche Entscheidung trifft der ML–Decoder für $\underline{y} = (1, 0, 1, 1, 1)$, wenn ihm mitgeteilt wird, dass die beiden letzten Symbole eher unsicher sind?

$\underline{z} = \underline{x}_{0} = (0, 0, 0, 0, 0)$,
$\underline{z} = \underline{x}_{1} = (0, 1, 0, 1, 0)$,
$\underline{z} = \underline{x}_{2} = (1, 0, 1, 0, 1)$,
$\underline{z} = \underline{x}_{3} = (1, 1, 1, 1, 1)$.

4

Zu welchem Informationswort $v = (v_{1}, v_{2})$ führt die Entscheidung gemäß der letzten Teilaufgabe?

$v_{1} \ = \ $

$v_{2} \ = \ $


Musterlösung

(1)  Richtig ist die Antwort 3:

  • Die Hamming–Distanzen zwischen dem spezifischen Empfangswort $\underline{y} = (1, 0, 0, 0, 1)$ und den vier möglichen Codeworten $\underline{x}_{i}$ ergeben sich wie folgt:
$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}.$$
  • Entschieden wird sich für die Folge mit der geringsten Hamming–Distanz $d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1$.


(2)  Für $\underline{y} = (0, 0, 0, 1, 0)$ sind die Antworten 1 und 2 richtig, wie die folgende Rechnung zeigt:

$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 4\hspace{0.05cm}.$$

(3)  Richtig ist die Antwort 3:

  • Entsprechend der Hamming–Distanz wäre eine Entscheidung zugunsten von $x_{2}$ genau so möglich wie für $x_{3}$, wenn der Vektor $\underline{y} = (1, 0, 1, 1, 1)$ empfangen wird:
$$d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 1\hspace{0.05cm}.$$
  • Der Empfangsvektor $\underline{y}$ unterscheidet sich aber von $x_{2}$ bezüglich des vierten Bits und von $x_{3}$ im zweiten Bit. Da das vierte Bit unsicherer ist als das zweite, wird er sich für $x_{2}$ entscheiden .


(4)  Da es sich hier um einen systematischen Code handelt, ist die Entscheidung für $\underline{z} = (1, 0, 1, 0, 1)$ gleichbedeutend mit der Entscheidung

$$v_{1} \ \underline{ = 1}, \ v_{2} \ \underline{= 0}.$$

Es ist nicht sicher, dass $\underline{u} = (1, 0)$ tatsächlich gesendet wurde, aber die Wahrscheinlichkeit ist angesichts des Empfangsvektors $\underline{y} = (1, 0, 1, 1, 1)$ hierfür am größten.