Difference between revisions of "Aufgaben:Exercise 1.3: Measured Step Response"
m (Guenter verschob die Seite 1.3 Gemessene Sprungantwort nach Aufgabe 1.3: Gemessene Sprungantwort) |
|
(No difference)
|
Revision as of 14:11, 3 January 2018
An den Eingang eines linearen zeitinvarianten (LZI–)Übertragungssystems mit Frequenzgang $H(f)$ und Impulsantwort $h(t)$ wird ein sprungförmiges Signal angelegt (blaue Kurve): $$x_1(t) = 4\ {\rm V} \cdot \gamma(t).$$ Das gemessene Ausgangssignal $y_1(t)$ hat dann den in der unteren Grafik dargestellten Verlauf. Mit $T = 2 \,{\rm ms}$ kann dieses Signal im Bereich von $0$ bis $T$ wie folgt beschrieben werden: $$y_1(t) = 2\,{\rm V} \cdot\left[ {t}/{T} - 0.5 \cdot ({t}/{T})^2\right].$$
Ab $t = T $ ist $y_1(t)$ konstant gleich $1 \,{\rm V}$.
In der letzten Teilaufgabe (5) wird nach dem Ausgangssignal $y_2(t)$ gefragt, wenn am Eingang ein symmetrischer Rechteckimpuls $x_2(t)$ der Dauer $T = 2 \ {\rm ms}$ anliegt (siehe roter Kurvenzug in der oberen Grafik).
Hinweise:
- Die Aufgabe gehört zum Kapitel Systembeschreibung im Zeitbereich
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Für den Rechteckimpuls $x_2(t)$ kann mit $A = 2 \ \text{V}$ auch geschrieben werden:
- $$x_2(t) = A \cdot \big [\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\big ].$$
- Der Frequenzgang $H(f)$ des hier betrachteten LZI–Systems kann dem Angabenblatt zu Aufgabe 3.8 im Buch „Signaldarstellung” entnommen werden. Allerdings sind die Abszissen– und Ordinatenparameter entsprechend anzupassen.
- Zur Lösung der vorliegenden Aufgabe 1.3 wird $H(f)$ jedoch nicht explizit benötigt.
Fragebogen
Musterlösung
Das Eingangssignal $x_1(t)$ kann für sehr große Zeiten $(t >> 0)$ als Gleichsignal interpretiert werden. Wäre $H(f)$ ein Hochpass, dann müsste $y_1(t)$ für $t → ∞$ gegen 0 gehen. Das heißt: $H(f)$ stellt einen Tiefpass dar. Richtig sind dieLösungsvorschläge 2 und 3..
(2) Der Gleichsignalübertragungsfaktor kann aus $x_1(t)$ und $y_1(t)$ abgelesen werden, wenn der Einschwingvorgang abgeklungen ist:
$$H(f =0) = \frac{y_1(t \rightarrow \infty)}{x_1(t \rightarrow \infty)}=
\frac{ {\rm 1\, V} }{ {\rm 4\, V} } \hspace{0.15cm}\underline{= 0.25}.$$
(3) Die Sprungantwort $σ(t)$ ist gleich dem Ausgangssignal $y(t)$, wenn am Eingang $x(t) = γ(t)$ anliegen würde. Wegen $x_1(t) = 4 \ \rm {V} · γ(t)$ gilt somit im Bereich von $0$ bis $T = 2 \ \rm ms$: $$\sigma(t) = \frac{y_1(t)}{ {\rm 4\, V} } = 0.5 \cdot\left( {t}/{T} - 0.5 ({t}/{T})^2\right).$$ Zum Zeitpunkt $t = T = 2 \ \rm ms$ erreicht die Sprungantwort ihren Endwert 0.25. Für $t = T/2 = 1 \ \rm ms$ ergibt sich der Zahlenwert $3/16 \; \underline{\: = \: 0.1875}$. Beachten Sie bitte, dass die Sprungantwort $σ(t)$ ebenso wie die Sprungfunktion $γ(t)$ keine Einheit besitzt.
(4) Die Sprungantwort $σ(t)$ ist das Integral über die Impulsantwort $h(t)$. Damit ergibt sich $h(t)$ aus $σ(t)$ durch Differentiation nach der Zeit. Im Bereich $0 < t < T$ gilt deshalb:
$$h(t) = \frac{{\rm d}\hspace{0.1cm}\sigma(t)}{{\rm d}t}= 0.5 \cdot\left( \frac{1}{T} - 0.5 (\frac{2t}{T^2})\right) = \frac{0.5}{T} \cdot (1- \frac{t}{T})$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 1\, ms}) = h(t = T/2) = \frac{0.25}{T} \hspace{0.15cm}\underline{= 125 \cdot{1}/{ {\rm s} } },$$
$$\Rightarrow \hspace{0.2cm} h(t = {\rm 2\, ms}) = h(t = T) \hspace{0.15cm}\underline{= 0}.$$
Für $t < 0$ und $t ≥ T$ ist $h(t)$ stets $0$. Der Wert $h(t = 0)$ bei exakt $t = 0$ muss aus dem Mittelwert zwischen links- und rechtsseitigem Grenzwert ermittelt werden:
$$h(t=0) = {1}/{2} \cdot \left[ \lim_{\varepsilon
\hspace{0.03cm} \to \hspace{0.03cm}0} h(- \varepsilon)+ \lim_{\varepsilon
\hspace{0.03cm} \to \hspace{0.03cm} 0} h(+ \varepsilon)\right] = \left[ 0 + {0.5}/{T}\right] = {0.25}/{T}= 250 \cdot{1}/{ {\rm s} }.$$
(5) Der Rechteckimpuls $x_2(t)$ kann auch als die Differenz zweier um $±T/2$ verschobener Sprünge dargestellt werden: $$x_2(t) = A \cdot \left[\gamma(t + {T}/{2}) - \gamma(t - {T}/{2})\right].$$ Damit ist das Ausgangssignal gleich der Differenz zweier um $±T/2$ verschobener Sprungantworten: $$y_2(t) = A \cdot \left[\sigma(t + {T}/{2}) - \sigma(t - {T}/{2})\right].$$ Für $t = \: –T/2 = –1\ \rm ms$ gilt $y_2(t) \;\underline{ = 0}$. Für die weiteren betrachteten Zeitpunkte erhält man wie in der Grafik angegeben: $$y_2(t = 0) = A \cdot \left[\sigma(0.5 \cdot T) - \sigma(-0.5 \cdot T)\right] = {\rm 2\, V}\cdot \left[0.1875 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.375\, V}},$$ $$y_2(t = T/2) = y_2(t = 1\,{\rm ms}) =A \cdot \left[\sigma( T) - \sigma(0)\right] = {\rm 2\, V}\cdot \left[0.25 - 0\right] \hspace{0.15cm}\underline{= {\rm 0.5\, V}},$$ $$y_2(t = T) = A \cdot \left[\sigma(1.5 \cdot T) - \sigma(0.5 \cdot T)\right] = {\rm 2\, V}\cdot \left[0.25 - 0.1875\right] \hspace{0.15cm}\underline{= {\rm 0.125\, V}}.$$