Difference between revisions of "Aufgaben:Exercise 5.6Z: Gilbert-Elliott Model"
m (Guenter verschob die Seite 5.6Z GE-Modelleigenschaften nach Aufgabe 5.6Z: GE-Modelleigenschaften) |
|
(No difference)
|
Revision as of 08:41, 4 January 2018
Wir betrachten das Bündelfehler–Kanalmodell nach E.N. Gilbert und E.O. Elliott (siehe Skizze). Für die Übergangswahrscheinlichkeiten soll dabei gelten:
- Pr(G|B)=0.1,Pr(B|G)=0.01.
Die Fehlerwahrscheinlichkeit im Zustand „GOOD” betrage pG=0.1% und für die im Zustand „BAD” gelte pB=10%.
Im Verlaufe dieser Aufgabe sollen weitere Kenngrößen ermittelt werden:
- die mittlere Fehlerwahrscheinlichkeit pM,
- die Zustandswahrscheinlichkeiten wG=Pr(Z=G) und wB=Pr(Z=B),
- die Werte der Korrelationsfunktion, die für k>0 analytisch wie folgt gegeben ist:
- φe(k)=p2M+(pB−pM)⋅(pM−pG)⋅[1−Pr(B|G)−Pr(G|B)]k.
Hinweise:
- Die Aufgabe gehört zum Kapitel Bündelfehlerkanäle.
- Bezug genommen wird aber auch auf das Kapitel Markovketten im Buch „Stochastische Signaltheorie”. und insbesondere auf die Seite Fehlerkorrelationsfunktion des GE–Modells im Buch „Kanalcodierung”.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Das GE–Modell ist eine stationäre Markovkette. Für die Wahrscheinlichkeit, dass sich diese im Zustand „GOOD” befindet, gilt unter Berücksichtigung des Ergebnisses der Teilaufgabe (1):
- w_{\rm G} = {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} G) \cdot w_{\rm G} + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) \cdot w_{\rm B}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) \cdot w_{\rm G} = {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) \cdot w_{\rm B} \hspace{0.05cm}.
Weiter gilt w_{\rm B} = 1 \, –w_{\rm G}:
- {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) \cdot w_{\rm G} + {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) \cdot w_{\rm G} = {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)
- \Rightarrow \hspace{0.3cm} w_{\rm G} = \frac{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} = \frac{0.1}{0.1 + 0.01} \hspace{0.15cm}\underline {\approx 0.909} \hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G }\hspace{0.15cm}\underline {\approx 0.091}\hspace{0.05cm}.
(3) Die mittlere Fehlerwahrscheinlichkeit p_{\rm M} ergibt sich aus den Fehlerwahrscheinlichkeiten p_{\rm G} und p_{\rm B}, gewichtet mit w_{\rm G} und w_{\rm B}:
- p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B} = \frac{10}{11} \cdot 10^{-3} + \frac{1}{11} \cdot 10^{-1}= \frac{10+100}{11} \cdot 10^{-3}\hspace{0.15cm}\underline { = 0.01}\hspace{0.05cm}.
(4) Entsprechend der allgemeinen Gleichung auf dem Angabenblatt gilt für k > 0:
- \varphi_{e}(k) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm M}^2 + (p_{\rm B} - p_{\rm M}) \cdot (p_{\rm M} - p_{\rm G}) \cdot [1 - {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )- {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B )]^{\it k} = 10^{-4} + 0.09 \cdot 0.009 \cdot 0.89^{\it k} = 10^{-4} \cdot \left ( 1 + 8.1 \cdot 0.89^{\it k} \right )\hspace{0.05cm}.
- \Rightarrow \hspace{0.3cm}\varphi_{e}(k = 1 ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 10^{-4} \cdot \left ( 1 + 8.1 \cdot 0.89^{ 1} \right ) \hspace{0.15cm}\underline {= 8.209 \cdot 10^{-4}} \hspace{0.05cm},
- \Rightarrow \hspace{0.3cm}\varphi_{e}(k = 2 ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 10^{-4} \cdot \left ( 1 + 8.1 \cdot 0.89^{ 2} \right )\hspace{0.15cm}\underline { = 7.416 \cdot 10^{-4}} \hspace{0.05cm},
- \Rightarrow \hspace{0.3cm}\varphi_{e}(k = 5 ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 10^{-4} \cdot \left ( 1 + 8.1 \cdot 0.89^{ 5} \right )\hspace{0.15cm}\underline {= 5.523 \cdot 10^{-4}} \hspace{0.05cm},
- \Rightarrow \hspace{0.3cm}\varphi_{e}(k = 50 ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 10^{-4} \cdot \left ( 1 + 8.1 \cdot 0.89^{ 50} \right ) \hspace{0.15cm}\underline {= 1.024 \cdot 10^{-4}} \hspace{0.05cm}.
(5) Für jedes Kanalmodell gilt wegen e_{\nu} ∈ \{0, 1\}:
- \varphi_{e}(k = 0 ) = {\rm E}[e_{\nu} ^2] = {\rm E}[e_{\nu} ] = p_{\rm M} \hspace{0.05cm}.
Mit dem Ergebnis der Teilaufgabe (3) ergibt sich für den vorliegenden Fall \varphi_e(k = 0) \ \underline {= 0.01}.
(6) Entsprechend der Teilaufgabe (3) gilt
- p_{\rm M} = {10}/{11} \cdot p_{\rm G} + {1}/{11} \cdot p_{\rm B} \hspace{0.05cm}.
Bei vorgegebenem p_{\rm B} = 0.1 ergibt sich selbst für p_{\rm G} = 0 (kein Fehler im Zustand „G”) die mittlere Fehlerwahrscheinlichkeit zu p_{\rm M} \approx 0.009. Dagegen ist mit festem p_{\rm G} = 0.001 der Wert p_{\rm M} = 0.005 erreichbar:
- 0.005 = {10}/{11} \cdot 10^{-3} + {1}/{11} \cdot p_{\rm B} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} \le 0.055 - 0.1 = 4.5\%\hspace{0.05cm}.
Weiterhin kann die mittlere Fehlerwahrscheinlichkeit (mit vorgegebenem p_{\rm G} und p_{\rm B}) auch wie folgt dargestellt werden:
- p_{\rm M} = \frac{p_{\rm G} \cdot {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)+ p_{\rm B} \cdot {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} = \frac{0.001 \cdot {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)+ 0.1 \cdot {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}\hspace{0.05cm}.
Mit \rm Pr(B|G) = 0.01 bzw. mit \rm Pr(G|B) = 0.1 erhält man folgende Gleichungen:
- {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{-0.15cm}:\hspace{0.2cm} {\it p}_{\rm M} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{0.001 \cdot {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)+ 0.001 }{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + 0.01}\hspace{0.05cm},\hspace{0.5cm} {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) = 0.1\hspace{-0.15cm}:\hspace{0.2cm}{\it p}_{\rm M} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{0.0001 + 0.1 \cdot {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{0.1 +{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) }\hspace{0.05cm}.
Aus der oberen Gleichung ist zu erkennen, dass mit keinem \rm Pr(G|B)–Wert das Ergebnis p_{\rm M} = 0.005 möglich ist. Dagegen lässt sich durch ein kleineres \rm Pr(B|G) die Bedingung erfüllen:
- 0.005 = \frac{0.0001 + 0.1 \cdot {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}{0.1 +{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) } \hspace{0.3cm} \Rightarrow \hspace{0.3cm}{\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) \le \frac{0.0004}{0.095} \approx 0.0042\hspace{0.05cm}.
Richtig sind somit die Lösungsvorschläge 2 und 4.