Difference between revisions of "Applets:Binomial- und Poissonverteilung (Applet)"

From LNTwww
Line 10: Line 10:
  
 
$\hspace{0.7cm}p={\rm Pr}(b_i=1)$ die Erfolgswahrscheinlichkeit  darstellt, und
 
$\hspace{0.7cm}p={\rm Pr}(b_i=1)$ die Erfolgswahrscheinlichkeit  darstellt, und
 +
  
 
*Poissonverteilungen:  
 
*Poissonverteilungen:  
 
$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},$$
 
$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},$$
 
$\hspace{0.7cm}$wobei die Rate'''\lambda''' aus $\lambda=I\cdot p$ berechnet werden kann.
 
$\hspace{0.7cm}$wobei die Rate'''\lambda''' aus $\lambda=I\cdot p$ berechnet werden kann.
 
mit den verstellbaren Parametern:
 
 
*'''$I$''': Anzahl der binären und statisch voneinander unabhängigen Zufallsgrößen $b_i$
 
 
*'''$p$''': Erfolgswahrscheinlichkeit $\hspace{0.5cm}p={\rm Pr}(b_i=1)$
 
 
*'''$\lambda$''': Erwartete Ereignishäufigkeit
 
  
  

Revision as of 00:44, 16 February 2018

Programmbeschreibung


Dieses Applet ermöglicht die Berechnung und graphische Darstellung von Wahrscheinlichkeiten von

  • Binomialverteilungen:

$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu},$$

$\hspace{0.7cm}$wobei $I$ die Anzahl der binären und statisch voneinander unabhängigen Zufallsgrößen $b_i$ und

$\hspace{0.7cm}p={\rm Pr}(b_i=1)$ die Erfolgswahrscheinlichkeit darstellt, und


  • Poissonverteilungen:

$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},$$ $\hspace{0.7cm}$wobei die Rate\lambda aus $\lambda=I\cdot p$ berechnet werden kann.


Da gleichzeitig bis zu zwei Verteilungsfunktionen eingestellt werden können, können Binomial- und Poissonverteilungen einfach miteinander verglichen werden.

Theoretischer Hintergrund


Poissonverteilung als Grenzfall der Binomialverteilung