Difference between revisions of "Applets:Lineare Verzerrungen periodischer Signale"
Line 267: | Line 267: | ||
− | $\hspace{1.0cm}\text{Nach dem Tiefpass wird der zweite Anteil mehr und mehr unterdrückt. Für }f_2 = 10 \ \rm kHz\text{ gilt: }y_{\rm | + | $\hspace{1.0cm}\text{Nach dem Tiefpass wird der zweite Anteil mehr und mehr unterdrückt. Für }f_2 = 10 \ \rm kHz\text{ gilt: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).$ |
− | $\hspace{1.0cm}\text{Nach dem Hochpass überwiegt dagegen der zweite Anteil. Für }f_2 = 10 \ \rm kHz\text{ gilt: }y_{\rm | + | $\hspace{1.0cm}\text{Nach dem Hochpass überwiegt dagegen der zweite Anteil. Für }f_2 = 10 \ \rm kHz\text{ gilt: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ \rm ms) + x_2(t).$ . |
==Zur Handhabung des Applets== | ==Zur Handhabung des Applets== |
Revision as of 17:52, 20 February 2018
Contents
Programmbeschreibung
Dieses Applet veranschaulicht die Auswirkungen von linearen Verzerrungen (Dämpfungsverzerrungen und Phasenverzerrungen) anhand
- des Eingangssignals x(t) ⇒ Leistung Px:
- x(t)=x1(t)+x2(t)=A1⋅cos(2πf1⋅t−φ1)+A2⋅cos(2πf2⋅t−φ2),
- des Ausgangssignals y(t) ⇒ Leistung Py:
- y(t)=α1⋅x1(t−τ1)+α2⋅x2(t−τ2),
- des Matching–Ausgangssignals z(t) ⇒ Leistung Pz:
- z(t)=kM⋅y(t−τM)+α2⋅x2(t−τ2),
- des Differenzsignals ε(t)=z(t)−x(t) ⇒ Leistung Pε.
Als nächster Block im obigen Modell folgt das „Matching”: Dabei wird das Ausgangssignal y(t) mit für alle Frequenzen einheitlichen Größen kM und τM in Amplitude bzw. Phase angepasst. Dies ist also keine frequenzabhängige Entzerrung. Anhand des Signals z(t) kann unterschieden werden
- zwischen einer Dämpfungsverzerrung und einer frequenzunabhängigen Dämpfung, sowie
- zwischen einer Phasenverzerrung und einer für alle Frequenzen gleichen Laufzeit.
Als Maß für die Stärke der linearen Verzerrungen wird die Verzerrungsleistung (englisch: Distortion Power) PD verwendet. Für diese gilt:
- PD=min
Theoretischer Hintergrund
Unter Verzerrungen (englisch: Distortions) versteht man allgemein die unerwünschte deterministische Veränderungen eines Nachrichtensignals durch ein Übertragungssystem. Sie sind bei vielen Nachrichtensystemen neben den stochastischen Störungen (Rauschen, Nebensprechen, etc.) eine entscheidende Begrenzung für die Übertragungsqualität und die Übertragungsrate.
Ebenso wie man die „Stärke” von Rauschen durch
- die Rauschleistung (englisch: Noise Power) P_{\rm N} und
- das Signal–zu–Rauschleistungsverhältnis (englisch: Signal–to–Noise Ratio, SNR) \rho_{\rm N}
bewertet, verwendet man zur Quantifizierung der Verzerrungen
- die Verzerrungsleistung (englisch: Distortion Power) P_{\rm D} und
- das Signal–zu–Verzerrungsleistungsverhältnis (englisch: Signal–to–Distortion Ratio, SDR)
- \rho_{\rm D}=\frac{\rm Signalleistung}{\rm Verzerrungsleistung} = \frac{P_x}{P_{\rm D} }.
Lineare und nichtlineare Verzerrungen
Man unterscheidet zwischen linearen und nichtlinearen Verzerrungen:
- Nichtlineare Verzerrungen gibt es, wenn zu allen Zeiten t zwischen dem Signalwert x = x(t) am Eingang und dem Ausgangssignalwert y = y(t) der nichtlineare Zusammenhang y = g(x) \ne {\rm const.} \cdot x besteht, wobei y = g(x) die nichtlineare Kennlinie des Systems bezeichnet. Legt man an den Eingang ein Cosinussignal der Freuenz f_0 an, so beinhaltet das Ausgangssignal neben f_0 auch Vielfache hiervon ⇒ so genannte Oberwellen. Durch nichtlineare Verzerrungen entstehen also neue Frequenzen.
- Lineare Verzerrungen entstehen dann, wenn der Übertragungskanal durch einen Frequenzgang H(f) \ne \rm const. charakterisiert wird. Dann werden unterschiedliche Frequenzen unterschiedlich gedämpft und unterschiedlich verzögert. Charakteristisch hierfür ist, dass zwar Frequenzen verschwinden können (zum Beispiel durch einen Tiefpass, einen Hochpass oder einen Bandpass), dass aber keine neuen Frequenzen entstehen.
In diesem Applet werden nur lineare Verzerrungen betrachtet.
Beschreibungsformen für den Frequenzgang
Der im Allgemeinen komplexe Frequenzgang kann auch wie folgt dargestellt werden:
- H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.
Daraus ergeben sich folgende Beschreibungsgrößen:
- Der Betrag |H(f)| wird als Amplitudengang und in logarithmierter Form als Dämpfungsverlauf bezeichnet:
- a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper \hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Dezibel \hspace{0.1cm}(dB) }.
- Der Phasengang b(f) gibt den negativen frequenzabhängigen Winkel von H(f) in der komplexen Ebene an, bezogen auf die reelle Achse:
- b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in \hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.
Tiefpass N–ter Ordnung
Der Frequenzgang eines realisierbaren Tiefpasses N–Ordnung lautet:
- H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.
Ein einfacher RC–Tiefpass hat diesen Verlauf mit N=1. Damit erhält man
- den Dämpfungsverlauf:
- a(f) =N/2 \cdot \ln [1+( f/f_0)^2] \hspace{0.05cm},
- den Phasenverlauf:
- b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},
- den Dämpfungsfaktor für die Frequenz f=f_i:
- \alpha_i =|H(f = f_i)| = [1+( f/f_0)^2]^{-N/2}
- \Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},
- die Phasenlaufzeit für die Frequenz f=f_i:
- \tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}
- \Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.
Hochpass N–ter Ordnung
Der Frequenzgang eines realisierbaren Hochpasses N–Ordnung lautet:
- H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.
Ein einfacher LC–Tiefpass hat diesen Verlauf mit N=1. Damit erhält man
- den Dämpfungsverlauf:
- a(f) =N/2 \cdot \ln [1+( f_0/f)^2] \hspace{0.05cm},
- den Phasenverlauf:
- b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},
- den Dämpfungsfaktor für die Frequenz f=f_i:
- \alpha_i =|H(f = f_i)| = [1+( f_0/f)^2]^{-N/2}
- \Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},
- die Phasenlaufzeit für die Frequenz f=f_i:
- \tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2 \pi f_i}
- \Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2 \pi f_i (t- \tau_i))\hspace{0.05cm}.
\text{Beispiel:} Die Grafik zeigt jeweils für die Grenzfrequenz f_0 = 1\ \rm kHz und die Ordnung N=1 die Phasenfunktion b(f)
- eines Tiefpasses (englisch: low–pass) als grüne Kurve, und
- eines Hochpasses (englisch: high–pass) als violette Kurve.
Das Eingangssignal sei jeweils sinusförmig mit der Frequenz f_{\rm S} = 1.25\ {\rm kHz}, wobei dieses Signal erst zum Zeitpunkt t=0 eingeschaltet wird:
- x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0 \\ \sin(2\pi \cdot f_{\rm S} \cdot t ) \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \\ \end{array}\begin{array} \ t < 0, \\ t>0. \\ \end{array}
In der linken (blau umrandeten) Grafik ist dieses Signal x(t) dargestellt. Der Zeitpunkt t = T_0 = 0.8\ {\rm ms} der ersten Nullstelle ist durch eine gestrichelte Linie markiert. Die beiden anderen Grafiken zeigen die Ausgangssignale y_{\rm TP}(t) und y_{\rm HP}(t) von Tiefpass und Hochpass, wobei in beiden Fällen die Amplitudenänderungen ausgeglichen wurden.
- Die erste Nullstelle des Signals y_{\rm TP}(t) nach dem Tiefpass kommt um \tau_{\rm TP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms} später als die erste Nullstelle von x(t) ⇒ markiert mit grünem Pfeil, wobei b_{\rm TP}(f/f_{\rm S} )= 0.9 \ {\rm rad} berücksichtigt wurde.
- Dagegen ist die Laufzeit des Hochpasses negativ: \tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx 0.085 \ {\rm ms} und die erste Nullstelle von y_{\rm HP}(t) kommt deshalb vor der weißen Markierung.
- Nach diesem Einschwingvorgang kommen in beiden Fällen die Nulldurchgänge wieder im Raster der Periodendauer T_0 = 0.8 \ {\rm ms}.
Anmerkung: Die gezeigten Signalverläufe wurden mit dem intereaktiven Applet Kausale Systeme – Laplacetransformation erstellt.
Dämpfungsverzerrungen und Phasenverzerrungen
Die nebenstehende Grafik zeigt
- den geraden Dämpfungsverlauf a(f) ⇒ a(-f) = a(f), und
- den ungeraden Phasenverlauf b(f) ⇒ b(-f) = -b(- f)
eines verzerrungsfreien Systems. Man erkennt:
- Bei einem verzerrungsfreien Systems muss in einem Bereich von f_{\rm U} bis f_{\rm O} um die Trägerfrequenz f_{\rm T}, in dem das Signal x(t) Anteile besitzt, die Dämpfungsfunktion a(f) konstant sein.
- Aus dem angegebenen konstanten Dämpfungswert 6 \ \rm dB folgt für den Amplitudengang |H(f)| = 0.5 ⇒ die Signalwerte aller Frequenzen werden somit durch das System halbiert ⇒ keine Dämpfungsverzerrungen.
- Zusätzlich muss bei einem solchen Systems der Phasenverlauf b(f) zwischen f_{\rm U} und f_{\rm O} linear mit der Frequenz ansteigen. Dies hat zur Folge, dass alle Frequenzanteile um die gleiche Phasenlaufzeit τ verzögert werden ⇒ keine Phasenverzerrungen.
- Die Verzögerung τ liegt durch die Steigung von b(f) fest. Mit b(f) = 0 würde sich ein laufzeitfreies System ergeben ⇒ τ = 0.
Die folgende Zusammenfassung berücksichtigt, dass in diesem Applet das Einganssignal stets die Summe zweier harmonischer Schwingungen ist:
- x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).
Damit wird der Kanaleinfluss durch die Dämpfungsfaktoren \alpha_1 und \alpha_2 sowie die Phasenlaufzeiten \tau_1 und \tau_2 vollständig beschrieben:
- y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2).
\text{Fazit:}
- Ein Signal y(t) ist gegenüber dem Eingang x(t) nur dann unverzerrt, wenn \alpha_1 = \alpha_2= \alpha und \tau_1 = \tau_2= \tau gilt ⇒ y(t) = \alpha \cdot x(t-\tau).
- Dämpfungsverzerrungen ergeben sich, falls \alpha_1 \ne \alpha_2 ist . Ist \alpha_1 \ne \alpha_2 und \tau_1 = \tau_2, so liegen ausschließlich Dämpfungsverzerrungen vor.
- Phasenverzerrungen gibt es für \tau_1 \ne \tau_2. Ist \tau_1 \ne \tau_2 und \alpha_1 = \alpha_2, so liegen ausschließlich Phasenverzerrungen vor.
Versuchsdurchführung
BlaBla
(1) Für das Eingangssignal x(t) gelte A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ.
- Wie groß ist die Periodendauer T_0? Welche Leistung P_x weist dieses Signal auf? Wo kann man diesen Wert im Programm ablesen?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ größter gemeinsamer Teiler }(0.5 \ {\rm kHz}, \ 1.5 \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ = 2.0 \ {\rm ms}};
\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, wenn }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0.
(2) Variieren Sie bei sonst gleicher Einstellung wie unter (1) die Phase \varphi_2 im gesamten möglichen Bereich \pm 180^\circ. Wie ändern sich T_0 und P_x?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x = 0.5 \ {\rm V^2}}.
(3) Variieren Sie bei sonst gleicher Einstellung wie unter (1) die Frequenz f_2 im Bereich 0 \le f_2 \le 5\ {\rm kHz}. Wie ändert sich die Signalleistung P_x?
\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Keine Veränderungen, falls }f_2 \ne 0\text{ und } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x = 0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ ändert sich, falls }f_2\text{ kein Vielfaches von }f_1.
\hspace{1.85cm}\text{Falls }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}. \hspace{3cm}\text{Allgemeine Formel noch überprüfen}
\hspace{1.85cm}\text{Falls }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1 \cdot \cos(\varphi_1) + A_2 \cdot \cos(\varphi_2)]^2/2 + [A_1\sin \cdot (\varphi_1) + A_2 \cdot \sin(\varphi_2)]^2/2 \text{. Mit } \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x = 0.74 \ {\rm V^2}}\text{.}
(4) Ausgehend vom bisherigen Eingangssignal x(t) gelte für den Kanal: \alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}. Zudem sei k_{\rm M} = 1 \text{ und } \tau_{\rm M} = 0 .
- Gibt es lineare Verzerrungen? Wie groß ist die Empfangsleistung P_y und die Leistung P_\varepsilon des Differenzsignals \varepsilon(t) = z(t) - x(t)?
\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ ist unverzerrt, nur gedämpft und verzögert.}
\hspace{1.85cm}\text{Empfangsleistung:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{. } P_\varepsilon \text{ ist deutlich größer:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.
(5) Variieren Sie bei sonst gleicher Einstellung wie unter (4) die Matchingparameter k_{\rm M} \text{ und } \tau_{\rm M}. Wie groß ist die Verzerrungsleistung P_{\rm D}?
\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ ist gleich der Leistung }P_\varepsilon \text{ des Differenzsignals bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M} = 2 \text{ und } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}
\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{weder Dämpfungs- noch Phasenverzerrungen.}
(6) Für den Kanal gelte nun \alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}. Wie groß sind nun die Verzerrungsleistung P_{\rm D} und das Signal–zu–Verzerrungsverhäldnis (\rm SDR) \rho_{\rm D}?
\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ und } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.059 \ {\rm V^2}}.
\hspace{1.85cm}\text{Nur Dämpfungsverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}.
(7) Für den Kanal gelte nun \alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \ \tau_2 = 0.5\ {\rm ms}. Wie groß sind nun P_{\rm D} und \rho_{\rm D}?
\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.82} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.072 \ {\rm V^2}}.
\hspace{1.85cm}\text{Nur Phasenverzerrungen.} \hspace{0.3cm}\text{Signal-zu-Verzerrung-Leistungsverhältnis}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}.
(8) Die Kanalparameter seien nun \hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 0.5\ {\rm ms} }, \ \hspace{0.15cm}\underline{\tau_2 = 0.3\ {\rm ms} }. Gibt es Dämpfungs– und/oder Phasenverzerrungen?
- Wie kann man y(t) annähern? Hinweis: \cos(3x) = 4 \cdot \cos^3(x) - 3\cdot \cos(x).
\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Es gibt sowohlDämpfungs– als auch Phasenverzerrungen, weil }\alpha_1 \ne \alpha_2\text{ und }\tau_1 \ne \tau_2.
\hspace{1.85cm}\text{Es gilt }y(t) = y_1(t) + y_2(t)\ \Rightarrow \ y_1(t) = A_1 \cdot \alpha_1 \cdot \sin[2\pi f_1\ (t- 0.5\ \rm ms)] = -0.4 \ {\rm V} \cdot \cos(2\pi f_1 t)
\hspace{1.85cm} y_2(t) = \alpha_2 \cdot x_2(t- \tau_2) \text{ mit }x_2(t) = A_2 \cdot \cos[2\pi f_2\ (t- 30^\circ)] \approx A_2 \cdot \cos[2\pi f_2\ (t- 1/36 \ \rm ms)]
\hspace{1.85cm} \Rightarrow \ y_2(t) = 0.12 \ {\rm V} \cdot \cos[2\pi f_2\ (t- 0.328 \ {\rm ms})] \approx -0.12 \ { \rm V} \cdot \cos[2\pi f_2t] .
\hspace{1.85cm} \Rightarrow \ y(t) = y_1(t) + y_2(t) \approx -0.4 \ {\rm V} \cdot [\cos(2\pi \cdot f_1\cdot t) + 1/3 \cdot \cos(2\pi \cdot 3 f_1 \cdot t) = -0.533 \ {\rm V} \cdot \cos^3(2\pi f_1 t).
(9) Es gelten weiter die Parameter von (8). Wie groß ist die Verzerrungsleistung P_{\rm D} and das Signal-zu-Verzerrungsleistungsverhältnis \rho_{\rm D}?
\hspace{1.0cm}\text{Bestmögliche Anpassung:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.96} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.65\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.156 \ {\rm V^2} },\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D} = 0.500/0.156 \approx 3.2}.
(10) Nun gelte A_2 = 0 sowie A_1 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \varphi_1 = 0^\circ. Der Kanal sei ein Tiefpass erster Ordnung (f_0 = 1\ {\rm kHz}).
- Gibt es Dämpfungs– und/oder Phasenverzerrungen? Wie groß sind die Kanalkoeffizienten \alpha_1 and \tau_1?
\hspace{1.0cm}\text{Bei nur einer Frequenz gibt es weder Dämpfungs– noch Phasenverzerrungen.}
\hspace{1.0cm}\text{Dämpfungsfaktor für }f_1=f_0\text{ und }N=1\text{: }\alpha_1 =|H(f = f_1)| = [1+( f_1/f_0)^2]^{-N/2} = 2^{-1/2}= 1/\sqrt{2}\hspace{0.15cm}\underline{=0.707},
\hspace{1.0cm}\text{Phasenlaufzeit für}f_1=f_0\text{ und }N=1\text{: }\tau_1 = N \cdot \arctan( f_1/f_0)/(2 \pi f_1)=\arctan( 1)/(2 \pi f_1) =1/(8f_1) \hspace{0.15cm}\underline{=0.125 \ \rm ms}.
(11) Wie ändern sich die Kanalparameter durch einen Tiefpass zweiter Ordnung gegenüber einem Tiefpass erster Ordnung (f_0 = 1\ {\rm kHz})?
\hspace{1.0cm}\text{Es gilt }\hspace{0.15cm}\alpha_1 = 0.707^2 = 0.5 und \tau_1 = 2 \cdot 0.125 0.25 \ {\rm ms}.
\hspace{1.0cm}\text{Das Signal }y(t)\text{ ist nur halb so groß wie }x(t)\text{ und läuft diesem nach: Aus dem Cosinusverlauf wird die Sinusfunktion}.
(12) Welche Unterschiede ergeben sich bei einem Hochpass zweiter Ordnung gegenüber einem Tiefpass zweiter Ordnung (f_0 = 1\ {\rm kHz}).
\hspace{1.0cm}\text{Wegen }f_1 = f_0\text{ ergibt sich der gleiche Dämpfungsfaktor }\alpha_1 = 0.5\text{ und es gilt }\tau_1 = -0.25 \ {\rm ms}\text{ Das heißt:}.
\hspace{1.0cm}\text{Das Signal }y(t)\text{ ist auch hier nur halb so groß wie }x(t)\text{ und läuft diesem vor: Aus dem Cosinusverlauf wird die Minus–Sinusfunktion}.
(13) Welche Unterschiede erkennen Sie am Signalverlauf y(t) zwischen dem Tiefpass zweiter Ordnung und dem Hochpass zweiter Ordnung (f_0 = 1\ {\rm kHz}), wenn Sie vom Eingangssignal gemäß(1) ausgehen und Sie die Frequenz f_2 kontinuierlich bis auf 10 \ \rm kHz erhöhen.
\hspace{1.0cm}\text{Nach dem Tiefpass wird der zweite Anteil mehr und mehr unterdrückt. Für }f_2 = 10 \ \rm kHz\text{ gilt: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).
\hspace{1.0cm}\text{Nach dem Hochpass überwiegt dagegen der zweite Anteil. Für }f_2 = 10 \ \rm kHz\text{ gilt: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ \rm ms) + x_2(t). .
Zur Handhabung des Applets
(A) Parametereingabe per Slider
(B) Bereich der graphischen Darstellung
(C) Variationsmöglichkeit für die graphische Darstellung
(D) Abspeichern und Zurückholen von Parametersätzen
(E) Numerikausgabe des Hauptergebnisses T_0; graphische Verdeutlichung durch rote Linie
(F) Ausgabe von x_{\rm max} und der Signalwerte x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)
(G) Darstellung der Signalwerte x(t_*) = x(t_* + T_0)= x(t_* + 2T_0) durch grüne Punkte
(H) Einstellung der Zeit t_* für die Signalwerte x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)
Details zum obigen Punkt (C)
(*) Zoom–Funktionen „+” (Vergrößern), „-” (Verkleinern) und \rm o (Zurücksetzen)
(*) Verschieben mit „\leftarrow” (Ausschnitt nach links, Ordinate nach rechts), „\uparrow” „\downarrow” und „\rightarrow”
Andere Möglichkeiten:
(*) Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
(*) Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2005 von Bettina Hirner im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder).
- 2018 wurde dieses Programm von Jimmy He im Rahmen seiner Bachelorarbeit (Betreuer: Tasnád Kernetzky – Mitarbeiter der Professur „Leitungsgebundene Übertragungstechnik„)) auf „HTML5” umgesetzt und neu gestaltet.