Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Dämpfung von Kupferkabeln"

From LNTwww
Line 74: Line 74:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)'''  Setzen Sie '''Blau''' zunächst auf Coax (2.6/9.5 mm) und anschließend auf Coax (1.2/4.4 mm). Die Kabellänge sei jeweils $l = 3\ \rm km$.  
+
'''(1)'''  Setzen Sie '''Blau''' zunächst auf Coax (2.6/9.5 mm) und anschließend auf Coax (1.2/4.4 mm). Die Kabellänge sei jeweils $l_{\rm Blau}= 3\ \rm km$.  
 
:Betrachten und Interpretieren Sie  aK(f) und  |HK(f)|, insbesondere die Funktionswerte aK(f=f=30 MHz) und |HK(f=0)|.}}
 
:Betrachten und Interpretieren Sie  aK(f) und  |HK(f)|, insbesondere die Funktionswerte aK(f=f=30 MHz) und |HK(f=0)|.}}
  

Revision as of 17:15, 3 March 2018

Open Applet in a new tab

Programmbeschreibung


Theoretischer Hintergrund


Betragsfrequenzgang und Dämpfungsfunktion

Es besteht folgender Zusammenhang zwischen dem Betragsfrequenzgang und der Dämpfungsfunktion:

|HK(f)|=10aK(f)/20=eaK, Np(f).
  • Der Index „K” soll deutlich machen, dass das betrachtete LZI–System ein Kaabel ist.
  • Bei der ersten Berechnungsvorschrift ist die Dämpfungsfunktion aK(f) in dB (Dezibel)einzusetzen.
  • Bei der zweiten Berechnungsvorschrift ist die Dämpfungsfunktion aK, Np(f) in Np (Neper) einzusetzen.
  • Es gelten folgende Umrechnungen 1 dB=0.05ln(10) Np=0.1151 Np bzw. 1 Np=20lg(e) dB=8.6859 dB.
  • In diesem Applet werden ausschließlich die dB–Werte verwendet.

Dämpfungsfunktion eines Koaxialkabels

Die Dämpfungsfunktion eines Koaxialkabels der Länge l wird in [Wel77][1] wie folgt angegeben:

aK(f)=(α0+α1f+α2f)l.
  • Beachten Sie bitte den Unterschied zwischen der Dämpfungsfunktion aK(f) in dB und den „alpha”–Koeffizienten mit anderen Pseudo–Einheiten.
  • Die Dämpfungsfunktion aK(f) ist direkt proportional zur Kabellänge l; aK(f)/l bezeichnet man als „Dämpfungsmaß” oder „kilometrische Dämpfung”.
  • Der frequenzunabhängige Anteil α_0 des Dämpfungsmaßes berücksichtigt die Ohmschen Verluste.
  • Der frequenzproportionale Anteil α_1 · f des Dämpfungsmaßes ist auf die Ableitungsverluste („Querverluste”) zurückzuführen.
  • Der dominante Anteil α_2 geht auf den Skineffekt zurück, der bewirkt, dass bei höherfrequentem Wechselstrom die Stromdichte im Leiterinneren niedriger ist als an der Oberfläche. Dadurch steigt der Widerstandsbelag einer elektrischen Leitung mit der Wurzel aus der Frequenz an.


Die Konstanten für das Normalkoaxialkabel mit 2.6 mm Innendurchmesser und 9.5 mm Außendurchmesser   ⇒  kurz Coax (2.6/9.5 mm) lauten:

\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.

Entsprechend gilt für das Kleinkoaxialkabel'   ⇒  kurz Coax (1.2/4.4 mm):

\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.00039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.


Diese Werte können aus den geometrischen Abmessungen der Kabel berechnet werden und wurden durch Messungen am Fernmeldetechnischen Zentralamt in Darmstadt bestätigt – siehe[Wel77][1] . Sie gelten für eine Temperatur von 20°C (293 K) und Frequenzen größer als 200 kHz.


  • In der Literatur findet man folgende Dämpfungsfunktion einer Zweidrahtleitung:

a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski & Wellhausen.}

  • Umrechnung der k-Parameter in die a-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite B minimal sein soll:

a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.

  • Kontrolle: k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.
  • Der Gesamtfrequenzgang H(f) ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor r, wobei stets B=f_2 und r=\frac{f_2-f_1}{f_2+f_1} gelten soll.
  • Ohne Berücksichtigung des Sendespektrums gilt H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}.
  • Der angegebene Integralwert =\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f ist ein Maß für die Rauschleistung des Systems, wenn der Kanal H_K(f) durch das Empfangsfilter H_E(f) in weiten Bereichen bis f_1 vollständig entzerrt wird.


  • idealer Kanal (a_0=a_1=a_2=0 dB), B=20 MHz, r=0: Integralwert = 40 MHz.
  • schwach verzerrender Kanal (a_2=5 dB), B=20 MHz, r=0.5: Integralwert \approx 505 MHz.

Versuchsdurchführung

Exercises binomial fertig.png
  • Wählen Sie zunächst die Nummer 1 ... 6 der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Hide solution”.
  • Aufgabenstellung und Lösung in Englisch.


Die Nummer 0 entspricht einem „Reset”:

  • Gleiche Einstellung wie beim Programmstart.
  • Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.


In der folgenden Beschreibung bedeutet

  • Blau:   Verteilungsfunktion 1 (im Applet blau markiert),
  • Rot:     Verteilungsfunktion 2 (im Applet rot markiert).


(1)  Setzen Sie Blau zunächst auf \text{Coax (2.6/9.5 mm)} und anschließend auf \text{Coax (1.2/4.4 mm)}. Die Kabellänge sei jeweils l_{\rm Blau}= 3\ \rm km.

Betrachten und Interpretieren Sie a_{\rm K}(f) und \vert H_{\rm K}(f) \vert, insbesondere die Funktionswerte a_{\rm K}(f = f_\star = 30 \ \rm MHz) und \vert H_{\rm K}(f = 0) \vert.


\Rightarrow\hspace{0.3cm}\text{Näherungsweise steigt die Dämpfungsfunktion mit }\sqrt{f}\text{ und der Betragsfrequenzgang fällt ähnlich einer Exponentialfunktion};

\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 39.2\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9951;

\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 86.0\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.9768.


(2)  Für Blau gelte \text{Coax (1.2/4.4 mm)} und l = 3\ \rm km. Wie wird a_{\rm K}(f =f_\star = 30 \ \rm MHz) von \alpha_0, \alpha_1 und \alpha_2 beeinflusst?


\Rightarrow\hspace{0.3cm}\text{Entscheidend ist }\alpha_2\text{ (Skineffekt). Die Beiträge von } \alpha_0\text{ (Ohmsche Verluste) und }\alpha_1 \text{ (Querverluste) sind jeweils nur ca. 0.2 dB.}


Vorgeschlagene Parametersätze

(1)   Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=20, a_1=0, a_2=0:
Konstante Werte a_K=20 dB und \left| H_K(f)\right|=0.1. Nur Ohmsche Verluste werden berücksichtigt.
(2) Parameter wie (1), aber zusätzlich a_1=1 dB/(km · MHz):
Linearer Anstieg von a_K(f) zwischen 20 dB und 50 dB, \left| H_K(f)\right| fällt beidseitig exponentiell ab.
(3)   Parameter wie (1), aber a_0=0, a_1=0, a_2=1 dB/(km · MHz1/2).
a_K(f) und \left| H_K(f)\right| werden ausschließlich durch den Skineffekt bestimmt. a_K(f) ist proportional zu f^{1/2}.
(4)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):
Es überwiegt der Skineffekt; a_k (f=30 MHz)=13.05 dB; ohne a_0: 13.04 dB, ohne a_1=12.92 dB.
(5)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 1.2/4.4 mm“ (Kleinkoaxialkabel):
Wieder überwiegt der Skineffekt; a_k (f=30 MHz)=28.66 dB; ohne a_0: 28.59 dB, ohne a_1=28.48 dB.
(6)   Nur roter Parametersatz, l=1 km, b=30 MHz, r=0, Einstellung „Zweidrahtleitung 0.4 mm“.
Skineffekt ist auch hier dominant; a_k (f=30 MHz)=111.4 dB; ohne k_1: 106.3 dB.
(7)   Parameter wie (6), aber nun Halbierung der Kabellänge (l=0.5 km):
Auch die Dämpfungswerte werden halbiert: a_k (f=30 MHz)=55.7 dB; ohne k_1: 53.2 dB.
(8)   Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:
Sehr gute Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.4 dB.
(9)   Parameter wie (8), aber nun Approximation auf die Bandbreite B=20 MHz:
Noch bessere Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.15 dB.
(10)   Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=a_1=a_2=0; unten Darstellung \left| H_K(f)\right|^2:
Im gesamten Bereich ist \left| H_K(f)\right|^2=1; der Integralwert ist somit 2B=60 (in MHz).
(11)   Parameter wie (10), aber nun mit Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):
\left| H_K(f)\right|^2 ist bei f=1 etwa 1 und steigt zu den Rändern bis ca. 20. Der Integralwert ist ca. 550.
(12)   Parameter wie (11), aber nun mit der deutlich größeren Kabellänge l=5 km:
Deutliche Verstärkung des Effekts; Anstieg bis ca. 3.35\cdot 10^6 am Rand und Integralwert 2.5\cdot 10^7.
(13)   Parameter wie (12), aber nun mit Rolloff-Faktor r=0.5:
Deutliche Abschwächung des Effekts; Anstieg bis ca. 5.25\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.07\cdot 10^6.
(14)   Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste (a_0=0):
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. 5.15\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.05\cdot 10^6.
(15)   Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste (a_1=0):
Ebenfalls kein großer Unterschied; Anstieg bis ca. 4.74\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 0.97\cdot 10^6.
(16)   Nur roter Parametersatz, l=1 km, B=30 MHz, r=0.5, Einstellung „Zweidrahtleitung 0.4 mm“:
Anstieg bis ca. 3\cdot 10^8 (f ca. 23 MHz), Integralwert ca. 4.55\cdot 10^9; ohne k_1: 0.93\cdot 10^8 (f ca. 23 MHz) bzw. 1.41\cdot 10^9.

Quellenverzeichnis

Open Applet in a new tab

  1. Jump up to: 1.0 1.1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.