Difference between revisions of "Applets:Attenuation of Copper Cables"
Line 276: | Line 276: | ||
− | ⇒The maximum value of |HE(f)| increases and 10⋅lg ηK decreases more and more. | + | ⇒The maximum value of |HE(f)| increases and 10⋅lg ηK decreases more and more. |
− | At 10 km length 10⋅lg ηK≈−104.9 dB and ropt=0.14. For f⋆≈14.5 MHz⇒|HE(f=f⋆)=352000⋅≈|HE(f=0)|. | + | At 10 km length 10⋅lg ηK≈−104.9 dB and ropt=0.14. For f⋆≈14.5 MHz⇒|HE(f=f⋆)=352000⋅≈|HE(f=0)|. |
==Vorgeschlagene Parametersätze== | ==Vorgeschlagene Parametersätze== |
Revision as of 01:06, 18 March 2018
Applet Description
Theoretical Background
Magnitude Frequency Response and Attenuation Function
Following relationship exists between the magnitude frequency response and the attenuation function:
- |HK(f)|=10−aK(f)/20=e−aK, Np(f).
- The index „K” makes it clear, that the considered LTI system is a cable(Ger: Kabel).
- For the first calculation rule, the damping function aK(f) must be used in dB (decibel).
- For the first calculation rule, the damping function aK, Np(f) must be used in Np (Neper).
- The following conversions apply: 1 dB=0.05⋅ln(10) Np=0.1151 Np or 1 Np=20⋅lg(e) dB=8.6859 dB.
- This applet exclusively uses dB values.
Attenuation Function of a Coaxial Cable
According to [Wel77][1] the Attenuation Function of a Coaxial Cable of length l is given as follows:
- aK(f)=(α0+α1⋅f+α2⋅√f)⋅l.
- It is important to note the difference between aK(f) in dB and the „alpha” coefficient with other pseudo–units.
- The attenuation function aK(f) is directly proportional to the cable length l; aK(f)/l is referred to as the „attenuation factor” or „kilometric attenuation”.
- The frequency-independent component α_0 of the attenuation factor takes into account the Ohmic losses.
- The frequency proportional portion α_1 · f of the attenuation factor is due to the derivation losses („crosswise loss”) .
- the dominant portion α_2 goes back to Skineffekt, which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.
The constants for the standard coaxial cable with a 2.6 mm inner diameter and a 9.5 mm outer diameter ⇒ short Coax (2.6/9.5 mm) are:
- \alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.
The same applies to the coaxial coaxial cable' ⇒ short Coax (1.2/4.4 mm):
- \alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.
These values can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77][1] . They are valid for a temperature of 20 ° C (293 K) and frequencies greater than 200 kHz.
Attenuation Function of a Two–wired Line
According to [PW95][2] the attenuation function of a Two–wired Line of length l is given as follows:
- a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.
This function is not directly interpretable, but is a phenomenological description.
[PW95][2]also provides the constants determined by measurement results:
- d = 0.35 \ {\rm mm}: k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62,
- d = 0.40 \ {\rm mm}: k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59,
- d = 0.50 \ {\rm mm}: k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60,
- d = 0.60 \ {\rm mm}: k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61.
From these numerical values one recognizes:
- The attenuation factor α(f) and the attenuation function a_{\rm K}(f) = α(f) · l depend significantly on the pipe diameter. The cables laid since 1994 with d = 0.35 \ \rm (mm) and d = 0.5 mm have a 10% greater attenuation factor than the older lines with d = 0.4 or d= 0.6.
- However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range l_{\rm max} of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate generators have to be used.
- The current transmission methods for copper lines prove only a relatively narrow frequency band, for example 120\ \rm kHz with ISDN and ca. 1100 \ \rm kHz with DSL. For f = 1 \ \rm MHz the attenuation factor of a 0.4 mm cable is around 20 \ \rm dB/km, so that even with a cable length of l = 4 \ \rm km the Attenuation does not exceed 80 \ \rm dB.
Conversion Between k and \alpha parameters
The k–parameters of the attenuation factor ⇒ \alpha_{\rm I} (f) can be converted into corresponding \alpha–parameters ⇒ \alpha_{\rm II} (f):
- \alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},
- \alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.
As a criterion of this conversion, we assume that the quadratic deviation of these two functions is minimal within a bandwidth B:
- \int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .
It is obvious that α_0 = k_1. The parameters α_1 and α_2 are dependent on the underlying bandwidth B and are:
- \begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}
\text{Example 1:}
- For k_3 = 1 (frequency proportional attenuation factor) we get \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .
- For k_3 = 0.5 (Skin effect) we get the coefficients: \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.
- For k_3 < 0.5 we get a negative \alpha_1. Conversion is only possible for 0.5 \le k_3 \le 1.
Umrechnung in Gegenrichtung
Fehlt noch
Channel Influence on the Binary Nyquistent Equalization
Going by the block diagram: Between the Dirac source and the decider are the frequency responses for the transmitter ⇒ H_{\rm S}(f), Channel ⇒ H_{\rm K}(f) and receiver ⇒ H_{\rm E}(f).
In this applet
- we neglect the influence of the transmitted pulse form ⇒ H_{\rm S}(f) \equiv 1 ⇒ dirac shaped transmission signal s(t),
- presuppose a binary Nyquist system with cosine–roll-off around the Nyquistf requency f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T) :
- H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).
This means: The first Nyquist criterion is met ⇒
Timely successive impulses do not disturb each other ⇒ there are no Intersymbol Interferences.
In the case of white noise, the transmission quality is thus determined solely by the noise power in front of the receiver:
- P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.
The lowest possible noise performance results with an ideal channel ⇒ H_{\rm K}(f) \equiv 1 and a rectangular H_{\rm CRO}(f) \equiv 1 in |f| \le f_{\rm Nyq}:
- P_\text{N, min} = P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .
\text{Definitionen:}
- Als Gütekriterium für ein gegebenes System verwenden wir den Gesamt–Wirkungsgrad:
- \eta_\text{K+R} = \frac{P_{\rm N} \ \big [\text{gegebenes System: Kanal }H_{\rm K}(f), \ \text{Roll-off-Faktor }r \big ]}{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \le 1.
Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben: 10 \cdot \lg \ \eta_\text{K+R} \le 0 \ \rm dB.
- Durch Variation und Optimierung des Roll-off-Faktors r erhält man den Kanal–Wirkungsgrad:
- \eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+R} .
Ab hier bis zum Beginn der Versuchsdurchführung ist alles Mist - eine Art Vorratsspeicher
- Bei UMTS ist das Empfangsfilter H_{\rm E}f) = H_{\rm S}(f) an den Sender angepasst (Matched–Filter) und der Gesamtfrequenzgang H(f) = H_{\rm S}(f) · H_{\rm E}(f) erfüllt
- H(f) = H_{\rm CRO}(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \cos^2 \left( \frac {\pi \cdot (|f| - f_1)}{2 \cdot (f_2 - f_1)} \right)\end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm sonst }\hspace{0.05cm}. \end{array} \begin{array}{*{20}c} |f| \le f_1, \\ |f| \ge f_2,\\ \\\end{array}
Die zugehörige Zeitfunktion lautet:
- h(t) = h_{\rm CRO}(t) ={\rm si}(\pi \cdot t/ T_{\rm C}) \cdot \frac{\cos(r \cdot \pi t/T_{\rm C})}{1- (2r \cdot t/T_{\rm C})^2}.
„CRO” steht hierbei für Cosinus–Rolloff (englisch: Raised Cosine). Die Summe f_1 + f_2 ist gleich dem Kehrwert der Chipdauer T_{\rm C} = 260 \ \rm ns, also gleich 3.84 \ \rm MHz. Der Rolloff–Faktor (wir bleiben bei der in \rm LNTwww gewählten Bezeichnung r, im UMTS–Standard wird hierfür \alpha verwendet)
- r = \frac{f_2 - f_1}{f_2 + f_1}
wurde bei UMTS zu r = 0.22 festgelegt. Die beiden Eckfrequenzen sind somit
- f_1 = {1}/(2 T_{\rm C}) \cdot (1-r) \approx 1.5\,{\rm MHz}, \hspace{0.2cm} f_2 ={1}/(2 T_{\rm C}) \cdot (1+r) \approx 2.35\,{\rm MHz}.
Die erforderliche Bandbreite beträgt B = 2 · f_2 = 4.7 \ \rm MHz. Für jeden UMTS–Kanal steht somit mit 5 \ \rm MHz ausreichend Bandbreite zur Verfügung.
\text{Fazit:} Die Grafik zeigt
- links das (normierte) Nyquistspektrum H(f), und
- rechts den zugehörigen Nyquistimpuls h(t), dessen Nulldurchgänge im Abstand T_{\rm C} äquidistant sind.
\text{Es ist zu beachten:}
- Das Sendefilter H_{\rm S}(f) und Matched–Filter H_{\rm E}(f) sind jeweils Wurzel–Cosinus–Rolloff–förmig (englisch: Root Raised Cosine). Erst das Produkt H(f) = H_{\rm S}(f) · H_{\rm E}(f) den Cosinus–Rolloff.
- Das bedeutet auch: Die Impulsantworten h_{\rm S}(t) und h_{\rm E}(t) erfüllen für sich allein die erste Nyquistbedingung nicht. Erst die Kombination aus beiden (im Zeitbereich die Faltung) führt zu den gewünschten äquidistanten Nulldurchgängen.
a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski & Wellhausen.}
- Umrechnung der k-Parameter in die a-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite B minimal sein soll:
a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.
- Kontrolle: k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.
- Der Gesamtfrequenzgang H(f) ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor r, wobei stets B=f_2 und r=\frac{f_2-f_1}{f_2+f_1} gelten soll.
- Ohne Berücksichtigung des Sendespektrums gilt H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}.
- Der angegebene Integralwert =\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f ist ein Maß für die Rauschleistung des Systems, wenn der Kanal H_K(f) durch das Empfangsfilter H_E(f) in weiten Bereichen bis f_1 vollständig entzerrt wird.
- idealer Kanal (a_0=a_1=a_2=0 dB), B=20 MHz, r=0: Integralwert = 40 MHz.
- schwach verzerrender Kanal (a_2=5 dB), B=20 MHz, r=0.5: Integralwert \approx 505 MHz.
Exercises
- First choose an exercise number.
- An exercise description is displayed.
- Parameter values are adjusted to the respective exercises.
- Click „Hide solition” to display the solution.
- Exercise description and solution in english
Number „0” is a „Reset” button:
- Sets parameters to initial values (when loading the page).
- Displays a „Reset text” to describe the applet further.
In der folgenden Beschreibung bedeutet
- Blau: Verteilungsfunktion 1 (im Applet blau markiert),
- Rot: Verteilungsfunktion 2 (im Applet rot markiert).
(1) First set Blue to \text{Coax (1.2/4.4 mm)} and then to \text{Coax (2.6/9.5 mm)}. The cable length is l_{\rm Blue}= 5\ \rm km.
- Interpret a_{\rm K}(f) and \vert H_{\rm K}(f) \vert, in particular the functional values a_{\rm K}(f = f_\star = 30 \ \rm MHz) and \vert H_{\rm K}(f = 0) \vert.
\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately }\sqrt{f}\text{ and the magnitude frequency response falls similarly to an exponential function};
\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.
\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;
(2) Set Blue to \text{Coax (1.2/4.4 mm)} and l_{\rm Blue} = 3\ \rm km. How is a_{\rm K}(f =f_\star = 30 \ \rm MHz) affected by \alpha_0, \alpha_1 und \alpha_2?
\Rightarrow\hspace{0.3cm}\alpha_2\text{is crucial (Skin effect). The contributions of } \alpha_0\text{ (ca. 0.1 dB) and }\alpha_1 \text{ (ca. 0.6 dB) are comparatively small.}
(3) Additionally, set Red to \text{Two–wired Line (0.5 mm)} and l_{\rm Red} = 1\ \rm km. What is the resulting value for a_{\rm K}(f =f_\star= 30 \ \rm MHz)?
- Up to what length l_{\rm Red} does the red attenuation function go under the blue one?
\Rightarrow\hspace{0.3cm}\text{Red curve: }a_{\rm K}(f = f_\star) = 87.5 {\ \rm dB} \text{. The above condition is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = 61.3 {\ \rm dB}.
(4) Set Red to {k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km and vary the Parameter 0.5 \le k_3 \le 1.
- What observations can be made based on a_{\rm K}(f) and \vert H_{\rm K}(f) \vert?
\Rightarrow\hspace{0.3cm}\text{With }k_2\text {being constant, }a_{\rm K}(f)\text{ increases with bigger values of }k_3\text{ and }\vert H_{\rm K}(f) \vert \text{ decreases faster and faster. With }k_3 =1: a_{\rm K}(f)\text{ rises linearly.}
\hspace{1.15cm}\text{With, }k_3 \to 0.5\text{ the attenuation function is more and more determined by the skin effect, same as the coaxial cable.}
(5) Set Red to \text{Two–wired Line (0.5 mm)} and Blue to \text{Conversion of Red}. For the length use l_{\rm Rot} = l_{\rm Blau} = 1\ \rm km.
- Analyse and interpret the displayed functions a_{\rm K}(f) and \vert H_{\rm K}(f) \vert.
\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.
(6) We assume the settings of (5). Which parts of the attenuation function are due to ohmic loss, lateral losses and skin effect?
\Rightarrow\hspace{0.3cm}\text{Solution based on '''Blue''': }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0\text{: }83.7\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0 \text{ and } \alpha_1\text{: }60.9\ {\rm dB}.
\hspace{1.15cm}\text{With a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than with a coaxial cable.}
(7) Set Blue to {\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0 and Red to {k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km. Additionally, set {f_{\rm Nyq} }' =15 and r= 0.5.
- How big is the total efficiency \eta_\text{K+E} and the channel efficiency \eta_\text{K}?
\Rightarrow\hspace{0.3cm}10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideal system) and }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: DC signal attenuation only)}.
\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.
(8) The same settings apply as in (7). Under what transmission power P_{\rm red} in respect to P_{\rm blue} do both systems achieve the same error probability?
\Rightarrow\hspace{0.3cm}\text{It has to apply: }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ ⇒ } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.
(9) Set Blue tof {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2 and Red to „Inactive”. Additionally set {f_{\rm Nyq} }' =15 and r= 0.7.
- What course does \vert H_{\rm E}(f) \vert have? Calculate the total efficiency \eta_\text{K+E} and the channel efficiency\eta_\text{K}
\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For }(f > 25 {\ \rm MHz): }\vert H_{\rm E}(f) \vert = 0.\text{ Inbetween is the effect of the CRO–flank.}
\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.5\text{is already set: }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.
(10) Set Blue to {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8 and Red to „Inactive”. Additionally, set {f_{\rm Nyq} }' =15 and r= 0.5.
- How big is \vert H_{\rm E}(f = 0) \vert? What is the maximum value of \vert H_{\rm E}(f) \vert? Calculate the channel efficiency \eta_\text{K}
\Rightarrow\hspace{0.3cm}\vert H_{\rm E}(f = 0) \vert = \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ and the maximum value } \vert H_{\rm E}(f) \vert \text{ is approximately }37500\text{ for }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},
\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.
(11) The same settings apply as in (10) and r= 0.17. Vary the cable length up to l_{\rm blue} =10 \ \rm km.
:How much does the maximum value of \vert H_{\rm E}(f) \vert, the channel efficiency \eta_\text{K} and the optimal rolloff factor r_{\rm opt} change?
<div style="clear:both;">
</div>
</div>
\Rightarrow\hspace{0.3cm}\text{The maximum value of } \vert H_{\rm E}(f) \vert \text{ increases and }10 \cdot \lg \ \eta_\text{K} \text{ decreases more and more.}
\hspace{0.95cm}\text{At 10 km length } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) = 352000 \cdot \approx \vert H_{\rm E}(f =0)\vert.
=='"`UNIQ--h-8--QINU`"'Vorgeschlagene Parametersätze==
(1) Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=20, a_1=0, a_2=0: <br>
Konstante Werte a_K=20 dB und \left| H_K(f)\right|=0.1. Nur Ohmsche Verluste werden berücksichtigt. <br>
(2) Parameter wie (1), aber zusätzlich a_1=1 dB/(km · MHz):<br>
Linearer Anstieg von a_K(f) zwischen 20 dB und 50 dB, \left| H_K(f)\right| fällt beidseitig exponentiell ab.<br>
(3) Parameter wie (1), aber a_0=0, a_1=0, a_2=1 dB/(km · MHz<sup>1/2</sup>).<br>
a_K(f) und \left| H_K(f)\right| werden ausschließlich durch den Skineffekt bestimmt. a_K(f) ist proportional zu f^{1/2}.<br>
(4) Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):<br>
Es überwiegt der Skineffekt; a_k (f=30 MHz)=13.05 dB; ohne a_0: 13.04 dB, ohne a_1=12.92 dB.<br>
(5) Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 1.2/4.4 mm“ (Kleinkoaxialkabel):<br>
Wieder überwiegt der Skineffekt; a_k (f=30 MHz)=28.66 dB; ohne a_0: 28.59 dB, ohne a_1=28.48 dB.<br>
(6) Nur roter Parametersatz, l=1 km, b=30 MHz, r=0, Einstellung „Zweidrahtleitung 0.4 mm“.<br>
Skineffekt ist auch hier dominant; a_k (f=30 MHz)=111.4 dB; ohne k_1: 106.3 dB.<br>
(7) Parameter wie (6), aber nun Halbierung der Kabellänge (l=0.5 km):<br>
Auch die Dämpfungswerte werden halbiert: a_k (f=30 MHz)=55.7 dB; ohne k_1: 53.2 dB.<br>
(8) Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:<br>
Sehr gute Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.4 dB.<br>
(9) Parameter wie (8), aber nun Approximation auf die Bandbreite B=20 MHz:<br>
Noch bessere Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.15 dB.<br>
(10) Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=a_1=a_2=0; unten Darstellung \left| H_K(f)\right|^2:<br>
Im gesamten Bereich ist \left| H_K(f)\right|^2=1; der Integralwert ist somit 2B=60 (in MHz).<br>
(11) Parameter wie (10), aber nun mit Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):<br>
\left| H_K(f)\right|^2 ist bei f=1 etwa 1 und steigt zu den Rändern bis ca. 20. Der Integralwert ist ca. 550.<br>
(12) Parameter wie (11), aber nun mit der deutlich größeren Kabellänge l=5 km:<br>
Deutliche Verstärkung des Effekts; Anstieg bis ca. 3.35\cdot 10^6 am Rand und Integralwert 2.5\cdot 10^7.<br>
(13) Parameter wie (12), aber nun mit Rolloff-Faktor r=0.5:<br>
Deutliche Abschwächung des Effekts; Anstieg bis ca. 5.25\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.07\cdot 10^6.<br>
(14) Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste (a_0=0):<br>
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. 5.15\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.05\cdot 10^6.<br>
(15) Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste (a_1=0):<br>
Ebenfalls kein großer Unterschied; Anstieg bis ca. 4.74\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 0.97\cdot 10^6.<br>
(16) Nur roter Parametersatz, l=1 km, B=30 MHz, r=0.5, Einstellung „Zweidrahtleitung 0.4 mm“:<br>
Anstieg bis ca. 3\cdot 10^8 (f ca. 23 MHz), Integralwert ca. 4.55\cdot 10^9; ohne k_1: 0.93\cdot 10^8 (f ca. 23 MHz) bzw. 1.41\cdot 10^9$.
Quellenverzeichnis
Open Applet in a new tab- ↑ Jump up to: 1.0 1.1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
- ↑ Jump up to: 2.0 2.1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.