Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Difference between revisions of "Applets:Attenuation of Copper Cables"

From LNTwww
Line 276: Line 276:
  
  
The maximum value of |HE(f)| increases and 10lg ηK decreases more and more.
+
The maximum value of |HE(f)| increases and 10lg ηK decreases more and more.
  
At 10 km length 10lg ηK104.9 dB and ropt=0.14. For f14.5 MHz|HE(f=f)=352000|HE(f=0)|.
+
At 10 km length 10lg ηK104.9 dB and ropt=0.14. For f14.5 MHz|HE(f=f)=352000|HE(f=0)|.
  
 
==Vorgeschlagene Parametersätze==  
 
==Vorgeschlagene Parametersätze==  

Revision as of 01:06, 18 March 2018

Open Applet in a new tab

Applet Description


Theoretical Background


Magnitude Frequency Response and Attenuation Function

Following relationship exists between the magnitude frequency response and the attenuation function:

|HK(f)|=10aK(f)/20=eaK, Np(f).
  • The index „K” makes it clear, that the considered LTI system is a cable(Ger: Kabel).
  • For the first calculation rule, the damping function aK(f) must be used in dB (decibel).
  • For the first calculation rule, the damping function aK, Np(f) must be used in Np (Neper).
  • The following conversions apply: 1 dB=0.05ln(10) Np=0.1151 Np or 1 Np=20lg(e) dB=8.6859 dB.
  • This applet exclusively uses dB values.

Attenuation Function of a Coaxial Cable

According to [Wel77][1] the Attenuation Function of a Coaxial Cable of length l is given as follows:

aK(f)=(α0+α1f+α2f)l.
  • It is important to note the difference between aK(f) in dB and the „alpha” coefficient with other pseudo–units.
  • The attenuation function aK(f) is directly proportional to the cable length l; aK(f)/l is referred to as the „attenuation factor” or „kilometric attenuation”.
  • The frequency-independent component α_0 of the attenuation factor takes into account the Ohmic losses.
  • The frequency proportional portion α_1 · f of the attenuation factor is due to the derivation losses („crosswise loss”) .
  • the dominant portion α_2 goes back to Skineffekt, which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.


The constants for the standard coaxial cable with a 2.6 mm inner diameter and a 9.5 mm outer diameter   ⇒  short Coax (2.6/9.5 mm) are:

\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.

The same applies to the coaxial coaxial cable'   ⇒  short Coax (1.2/4.4 mm):

\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.


These values ​​can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77][1] . They are valid for a temperature of 20 ° C (293 K) and frequencies greater than 200 kHz.


Attenuation Function of a Two–wired Line

According to [PW95][2] the attenuation function of a Two–wired Line of length l is given as follows:

a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.

This function is not directly interpretable, but is a phenomenological description.

[PW95][2]also provides the constants determined by measurement results:

  • d = 0.35 \ {\rm mm}:   k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62,
  • d = 0.40 \ {\rm mm}:   k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59,
  • d = 0.50 \ {\rm mm}:   k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60,
  • d = 0.60 \ {\rm mm}:   k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61.


From these numerical values one recognizes:

  • The attenuation factor α(f) and the attenuation function a_{\rm K}(f) = α(f) · l depend significantly on the pipe diameter. The cables laid since 1994 with d = 0.35 \ \rm (mm) and d = 0.5 mm have a 10% greater attenuation factor than the older lines with d = 0.4 or d= 0.6.
  • However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range l_{\rm max} of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate generators have to be used.
  • The current transmission methods for copper lines prove only a relatively narrow frequency band, for example 120\ \rm kHz with ISDN and ca. 1100 \ \rm kHz with DSL. For f = 1 \ \rm MHz the attenuation factor of a 0.4 mm cable is around 20 \ \rm dB/km, so that even with a cable length of l = 4 \ \rm km the Attenuation does not exceed 80 \ \rm dB.


Conversion Between k and \alpha parameters

The k–parameters of the attenuation factor   ⇒   \alpha_{\rm I} (f) can be converted into corresponding \alpha–parameters   ⇒   \alpha_{\rm II} (f):

\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},
\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.

As a criterion of this conversion, we assume that the quadratic deviation of these two functions is minimal within a bandwidth B:

\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .

It is obvious that α_0 = k_1. The parameters α_1 and α_2 are dependent on the underlying bandwidth B and are:

\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}

\text{Example 1:} 

  • For k_3 = 1 (frequency proportional attenuation factor) we get   \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .
  • For k_3 = 0.5 (Skin effect) we get the coefficients:   \alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.
  • For k_3 < 0.5 we get a negative \alpha_1. Conversion is only possible for 0.5 \le k_3 \le 1.


Umrechnung in Gegenrichtung

Fehlt noch

Channel Influence on the Binary Nyquistent Equalization

Simplified block diagram of the optimal Nyquistent equalizer

Going by the block diagram: Between the Dirac source and the decider are the frequency responses for the transmitter  ⇒  H_{\rm S}(f), Channel  ⇒  H_{\rm K}(f) and receiver   ⇒  H_{\rm E}(f).

In this applet

  • we neglect the influence of the transmitted pulse form   ⇒   H_{\rm S}(f) \equiv 1   ⇒   dirac shaped transmission signal s(t),
  • presuppose a binary Nyquist system with cosine–roll-off around the Nyquistf requency f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T) :
H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).

This means: The first Nyquist criterion is met  ⇒  
Timely successive impulses do not disturb each other   ⇒   there are no Intersymbol Interferences.

In the case of white noise, the transmission quality is thus determined solely by the noise power in front of the receiver:

P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.

The lowest possible noise performance results with an ideal channel   ⇒   H_{\rm K}(f) \equiv 1 and a rectangular H_{\rm CRO}(f) \equiv 1 in |f| \le f_{\rm Nyq}:

P_\text{N, min} = P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .

\text{Definitionen:} 

  • Als Gütekriterium für ein gegebenes System verwenden wir den Gesamt–Wirkungsgrad:
\eta_\text{K+R} = \frac{P_{\rm N} \ \big [\text{gegebenes System: Kanal }H_{\rm K}(f), \ \text{Roll-off-Faktor }r \big ]}{P_{\rm N} \ \big [\text{optimales System: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \le 1.

Diese Systemgröße wird im Applet für beide Parametersätze in logarithmierter Form angegeben:   10 \cdot \lg \ \eta_\text{K+R} \le 0 \ \rm dB.

  • Durch Variation und Optimierung des Roll-off-Faktors r erhält man den Kanal–Wirkungsgrad:
\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+R} .

Ab hier bis zum Beginn der Versuchsdurchführung ist alles Mist - eine Art Vorratsspeicher


  • Bei UMTS ist das Empfangsfilter H_{\rm E}f) = H_{\rm S}(f) an den Sender angepasst (Matched–Filter) und der Gesamtfrequenzgang H(f) = H_{\rm S}(f) · H_{\rm E}(f) erfüllt
H(f) = H_{\rm CRO}(f) = \left\{ \begin{array}{c} 1 \\ 0 \\ \cos^2 \left( \frac {\pi \cdot (|f| - f_1)}{2 \cdot (f_2 - f_1)} \right)\end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}}\\ {\rm sonst }\hspace{0.05cm}. \end{array} \begin{array}{*{20}c} |f| \le f_1, \\ |f| \ge f_2,\\ \\\end{array}

Die zugehörige Zeitfunktion lautet:

h(t) = h_{\rm CRO}(t) ={\rm si}(\pi \cdot t/ T_{\rm C}) \cdot \frac{\cos(r \cdot \pi t/T_{\rm C})}{1- (2r \cdot t/T_{\rm C})^2}.

„CRO” steht hierbei für Cosinus–Rolloff (englisch: Raised Cosine). Die Summe f_1 + f_2 ist gleich dem Kehrwert der Chipdauer T_{\rm C} = 260 \ \rm ns, also gleich 3.84 \ \rm MHz. Der Rolloff–Faktor (wir bleiben bei der in \rm LNTwww gewählten Bezeichnung r, im UMTS–Standard wird hierfür \alpha verwendet)

r = \frac{f_2 - f_1}{f_2 + f_1}

wurde bei UMTS zu r = 0.22 festgelegt. Die beiden Eckfrequenzen sind somit

f_1 = {1}/(2 T_{\rm C}) \cdot (1-r) \approx 1.5\,{\rm MHz}, \hspace{0.2cm} f_2 ={1}/(2 T_{\rm C}) \cdot (1+r) \approx 2.35\,{\rm MHz}.

Die erforderliche Bandbreite beträgt B = 2 · f_2 = 4.7 \ \rm MHz. Für jeden UMTS–Kanal steht somit mit 5 \ \rm MHz ausreichend Bandbreite zur Verfügung.

Cosinus–Rolloff–Spektrum und Impulsantwort

\text{Fazit:}  Die Grafik zeigt

  • links das (normierte) Nyquistspektrum H(f), und
  • rechts den zugehörigen Nyquistimpuls h(t), dessen Nulldurchgänge im Abstand T_{\rm C} äquidistant sind.


\text{Es ist zu beachten:}

  • Das Sendefilter H_{\rm S}(f) und Matched–Filter H_{\rm E}(f) sind jeweils Wurzel–Cosinus–Rolloff–förmig (englisch: Root Raised Cosine). Erst das Produkt H(f) = H_{\rm S}(f) · H_{\rm E}(f) den Cosinus–Rolloff.
  • Das bedeutet auch: Die Impulsantworten h_{\rm S}(t) und h_{\rm E}(t) erfüllen für sich allein die erste Nyquistbedingung nicht. Erst die Kombination aus beiden (im Zeitbereich die Faltung) führt zu den gewünschten äquidistanten Nulldurchgängen.


a_k(f)=(k_1+k_2\cdot f^{k_3})\cdot l \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \text{empirische Formel von Pollakowski & Wellhausen.}

  • Umrechnung der k-Parameter in die a-Parameter nach dem Kriterium, dass der mittlere quadratische Fehler innerhalb der Bandbreite B minimal sein soll:

a_0=k_1 \text{(trivial)}, \quad a_1=15\cdot B^{k_3-1}\cdot \frac{k_2\cdot (k_3-0.5)}{(k_3+1.5)\cdot (k_3+2)}, \quad a_2=10\cdot B^{k_3-0.5}\cdot \frac{k_2\cdot (1-k_3)}{(k_3+1.5)\cdot (k_3+2)}.

  • Kontrolle: k_3=1 \Rightarrow a_1=k_2;\ a_2=0 \quad k_3=0.5 \Rightarrow a_1=0;\ a_2=k_2.
  • Der Gesamtfrequenzgang H(f) ist ein Cosinus-Rolloff-Tiefpass mit Rolloff-Faktor r, wobei stets B=f_2 und r=\frac{f_2-f_1}{f_2+f_1} gelten soll.
  • Ohne Berücksichtigung des Sendespektrums gilt H(f)=H_K(f)\cdot H_E(f) \Rightarrow H_E(f)=\frac{H(f)}{H_K(f)}.
  • Der angegebene Integralwert =\int_{-\infty}^{+\infty} \left| H_E(f)\right|^2 \hspace{0.15cm} {\rm d}f ist ein Maß für die Rauschleistung des Systems, wenn der Kanal H_K(f) durch das Empfangsfilter H_E(f) in weiten Bereichen bis f_1 vollständig entzerrt wird.


  • idealer Kanal (a_0=a_1=a_2=0 dB), B=20 MHz, r=0: Integralwert = 40 MHz.
  • schwach verzerrender Kanal (a_2=5 dB), B=20 MHz, r=0.5: Integralwert \approx 505 MHz.

Exercises

Exercises binomial fertig.png
  • First choose an exercise number.
  • An exercise description is displayed.
  • Parameter values are adjusted to the respective exercises.
  • Click „Hide solition” to display the solution.
  • Exercise description and solution in english


Number „0” is a „Reset” button:

  • Sets parameters to initial values (when loading the page).
  • Displays a „Reset text” to describe the applet further.


In der folgenden Beschreibung bedeutet

  • Blau:   Verteilungsfunktion 1 (im Applet blau markiert),
  • Rot:     Verteilungsfunktion 2 (im Applet rot markiert).


(1)  First set Blue to \text{Coax (1.2/4.4 mm)} and then to \text{Coax (2.6/9.5 mm)}. The cable length is l_{\rm Blue}= 5\ \rm km.

Interpret a_{\rm K}(f) and \vert H_{\rm K}(f) \vert, in particular the functional values a_{\rm K}(f = f_\star = 30 \ \rm MHz) and \vert H_{\rm K}(f = 0) \vert.


\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately }\sqrt{f}\text{ and the magnitude frequency response falls similarly to an exponential function};


\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.

\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;


(2)  Set Blue to \text{Coax (1.2/4.4 mm)} and l_{\rm Blue} = 3\ \rm km. How is a_{\rm K}(f =f_\star = 30 \ \rm MHz) affected by \alpha_0, \alpha_1 und \alpha_2?


\Rightarrow\hspace{0.3cm}\alpha_2\text{is crucial (Skin effect). The contributions of } \alpha_0\text{ (ca. 0.1 dB) and }\alpha_1 \text{ (ca. 0.6 dB) are comparatively small.}


(3)  Additionally, set Red to \text{Two–wired Line (0.5 mm)} and l_{\rm Red} = 1\ \rm km. What is the resulting value for a_{\rm K}(f =f_\star= 30 \ \rm MHz)?

Up to what length l_{\rm Red} does the red attenuation function go under the blue one?


\Rightarrow\hspace{0.3cm}\text{Red curve: }a_{\rm K}(f = f_\star) = 87.5 {\ \rm dB} \text{. The above condition is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = 61.3 {\ \rm dB}.


(4)  Set Red to {k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km and vary the Parameter 0.5 \le k_3 \le 1.

What observations can be made based on a_{\rm K}(f) and \vert H_{\rm K}(f) \vert?


\Rightarrow\hspace{0.3cm}\text{With }k_2\text {being constant, }a_{\rm K}(f)\text{ increases with bigger values of }k_3\text{ and }\vert H_{\rm K}(f) \vert \text{ decreases faster and faster. With }k_3 =1: a_{\rm K}(f)\text{ rises linearly.}

\hspace{1.15cm}\text{With, }k_3 \to 0.5\text{ the attenuation function is more and more determined by the skin effect, same as the coaxial cable.}


(5)  Set Red to \text{Two–wired Line (0.5 mm)} and Blue to \text{Conversion of Red}. For the length use l_{\rm Rot} = l_{\rm Blau} = 1\ \rm km.

Analyse and interpret the displayed functions a_{\rm K}(f) and \vert H_{\rm K}(f) \vert.


\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.


(6)  We assume the settings of (5). Which parts of the attenuation function are due to ohmic loss, lateral losses and skin effect?


\Rightarrow\hspace{0.3cm}\text{Solution based on '''Blue''': }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0\text{: }83.7\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0 \text{ and } \alpha_1\text{: }60.9\ {\rm dB}.

\hspace{1.15cm}\text{With a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than with a coaxial cable.}


(7)  Set Blue to {\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0 and Red to {k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km. Additionally, set {f_{\rm Nyq} }' =15 and r= 0.5.

How big is the total efficiency \eta_\text{K+E} and the channel efficiency \eta_\text{K}?


\Rightarrow\hspace{0.3cm}10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideal system) and }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: DC signal attenuation only)}.

\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.


(8)  The same settings apply as in (7). Under what transmission power P_{\rm red} in respect to P_{\rm blue} do both systems achieve the same error probability?


\Rightarrow\hspace{0.3cm}\text{It has to apply: }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ ⇒ } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.


(9)  Set Blue tof {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2 and Red to „Inactive”. Additionally set {f_{\rm Nyq} }' =15 and r= 0.7.

What course does \vert H_{\rm E}(f) \vert have? Calculate the total efficiency \eta_\text{K+E} and the channel efficiency\eta_\text{K}


\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For }(f > 25 {\ \rm MHz): }\vert H_{\rm E}(f) \vert = 0.\text{ Inbetween is the effect of the CRO–flank.}

\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.5\text{is already set: }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.


(10)  Set Blue to {\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8 and Red to „Inactive”. Additionally, set {f_{\rm Nyq} }' =15 and r= 0.5.

How big is \vert H_{\rm E}(f = 0) \vert? What is the maximum value of \vert H_{\rm E}(f) \vert? Calculate the channel efficiency \eta_\text{K}


\Rightarrow\hspace{0.3cm}\vert H_{\rm E}(f = 0) \vert = \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ and the maximum value } \vert H_{\rm E}(f) \vert \text{ is approximately }37500\text{ for }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},

\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.


(11) The same settings apply as in (10) and r= 0.17. Vary the cable length up to l_{\rm blue} =10 \ \rm km. :How much does the maximum value of \vert H_{\rm E}(f) \vert, the channel efficiency \eta_\text{K} and the optimal rolloff factor r_{\rm opt} change? <div style="clear:both;"> </div> </div> \Rightarrow\hspace{0.3cm}\text{The maximum value of } \vert H_{\rm E}(f) \vert \text{ increases and }10 \cdot \lg \ \eta_\text{K} \text{ decreases more and more.} \hspace{0.95cm}\text{At 10 km length } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) = 352000 \cdot \approx \vert H_{\rm E}(f =0)\vert. =='"`UNIQ--h-8--QINU`"'Vorgeschlagene Parametersätze== (1)   Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=20, a_1=0, a_2=0: <br> Konstante Werte a_K=20 dB und \left| H_K(f)\right|=0.1. Nur Ohmsche Verluste werden berücksichtigt. <br> (2) Parameter wie (1), aber zusätzlich a_1=1 dB/(km · MHz):<br> Linearer Anstieg von a_K(f) zwischen 20 dB und 50 dB, \left| H_K(f)\right| fällt beidseitig exponentiell ab.<br> (3)   Parameter wie (1), aber a_0=0, a_1=0, a_2=1 dB/(km · MHz<sup>1/2</sup>).<br> a_K(f) und \left| H_K(f)\right| werden ausschließlich durch den Skineffekt bestimmt. a_K(f) ist proportional zu f^{1/2}.<br> (4)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):<br> Es überwiegt der Skineffekt; a_k (f=30 MHz)=13.05 dB; ohne a_0: 13.04 dB, ohne a_1=12.92 dB.<br> (5)   Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel 1.2/4.4 mm“ (Kleinkoaxialkabel):<br> Wieder überwiegt der Skineffekt; a_k (f=30 MHz)=28.66 dB; ohne a_0: 28.59 dB, ohne a_1=28.48 dB.<br> (6)   Nur roter Parametersatz, l=1 km, b=30 MHz, r=0, Einstellung „Zweidrahtleitung 0.4 mm“.<br> Skineffekt ist auch hier dominant; a_k (f=30 MHz)=111.4 dB; ohne k_1: 106.3 dB.<br> (7)   Parameter wie (6), aber nun Halbierung der Kabellänge (l=0.5 km):<br> Auch die Dämpfungswerte werden halbiert: a_k (f=30 MHz)=55.7 dB; ohne k_1: 53.2 dB.<br> (8)   Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:<br> Sehr gute Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.4 dB.<br> (9)   Parameter wie (8), aber nun Approximation auf die Bandbreite B=20 MHz:<br> Noch bessere Approximation der k-Parameter durch die a-Parameter; Abweichung < 0.15 dB.<br> (10)   Nur blauer Parametersatz, l=1 km, B=30 MHz, r=0, a_0=a_1=a_2=0; unten Darstellung \left| H_K(f)\right|^2:<br> Im gesamten Bereich ist \left| H_K(f)\right|^2=1; der Integralwert ist somit 2B=60 (in MHz).<br> (11)   Parameter wie (10), aber nun mit Einstellung „Koaxialkabel 2.6/9.5 mm“ (Normalkoaxialkabel):<br> \left| H_K(f)\right|^2 ist bei f=1 etwa 1 und steigt zu den Rändern bis ca. 20. Der Integralwert ist ca. 550.<br> (12)   Parameter wie (11), aber nun mit der deutlich größeren Kabellänge l=5 km:<br> Deutliche Verstärkung des Effekts; Anstieg bis ca. 3.35\cdot 10^6 am Rand und Integralwert 2.5\cdot 10^7.<br> (13)   Parameter wie (12), aber nun mit Rolloff-Faktor r=0.5:<br> Deutliche Abschwächung des Effekts; Anstieg bis ca. 5.25\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.07\cdot 10^6.<br> (14)   Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste (a_0=0):<br> Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. 5.15\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 1.05\cdot 10^6.<br> (15)   Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste (a_1=0):<br> Ebenfalls kein großer Unterschied; Anstieg bis ca. 4.74\cdot 10^4 (f ca. 20 MHz), Integralwert ca. 0.97\cdot 10^6.<br> (16)   Nur roter Parametersatz, l=1 km, B=30 MHz, r=0.5, Einstellung „Zweidrahtleitung 0.4 mm“:<br> Anstieg bis ca. 3\cdot 10^8 (f ca. 23 MHz), Integralwert ca. 4.55\cdot 10^9; ohne k_1: 0.93\cdot 10^8 (f ca. 23 MHz) bzw. 1.41\cdot 10^9$.

Quellenverzeichnis

Open Applet in a new tab
  1. Jump up to: 1.0 1.1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
  2. Jump up to: 2.0 2.1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.