Difference between revisions of "Applets:Attenuation of Copper Cables"
Line 96: | Line 96: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{ | + | $\text{Definitions:}$ |
− | * | + | *As a quality criterion for a given system we use the '''total efficiency''': |
− | :$$\eta_\text{K+R} = \frac{P_{\rm N} \ \big [\text{ | + | :$$\eta_\text{K+R} = \frac{P_{\rm N} \ \big [\text{Given system: Channel }H_{\rm K}(f), \ \text{Roll-off factor }r \big ]}{P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \le 1.$$ |
− | + | This system size is specified in the applet for both parameter sets in logarithm form: $10 \cdot \lg \ \eta_\text{K+R} \le 0 \ \rm dB$. | |
− | * | + | *Through variation and optimization of the Roll-off factor $r$ we get the '''Channel efficiency''': |
:$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+R} .$$}} | :$$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+R} .$$}} | ||
− | [[File:Applet_Kabeldämpfung_3_version2.png|right|frame| | + | [[File:Applet_Kabeldämpfung_3_version2.png|right|frame|Frequency response with Cosine–Roll-off|class=fit]] |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
$\text{Beispiel 2:}$ | $\text{Beispiel 2:}$ | ||
− | + | The graph shows the square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $ mit $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f) / \left \vert H_{\rm K}(f)\right \vert$ for the following boundary conditions: | |
− | * | + | *Attenuation function of the channel: $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$, |
− | *Nyquist | + | *Nyquist frequency: : $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off factor $r = 0.5$ |
− | + | This results in the following consequences: | |
− | * | + | *In the area up to $f_{1} = 10 \ {\rm MHz: }$ $H_{\rm CRO}(f) = 1$ ⇒ $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (see yellow deposit). |
− | * | + | * The flank of $H_{\rm CRO}(f)$ is only effective from $f_{1}$ to $f_{2} = 30 \ {\rm MHz}$ and $\left \vert H_{\rm E}(f)\right \vert ^2$ decreases more and more. |
− | * | + | *The maximum of $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ at $f_{\rm max} \approx 11.5 \ {\rm MHz}$ is twice the value of $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$. |
− | * | + | *The integral over $\left \vert H_{\rm E}(f)\right \vert ^2$ is a measure of the effective noise power. In the current example this is $4.6$ times bigger than the minimal noise power (for $a_{\rm K}(f) = 0 \ {\rm dB}$ and $r=1$) ⇒ $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$}} |
==Exercises== | ==Exercises== |
Revision as of 00:26, 18 March 2018
Contents
Applet Description
Theoretical Background
Magnitude Frequency Response and Attenuation Function
Following relationship exists between the magnitude frequency response and the attenuation function:
- $$\left | H_{\rm K}(f)\right |=10^{-a_\text{K}(f)/20} = {\rm e}^{-a_\text{K, Np}(f)}.$$
- The index „K” makes it clear, that the considered LTI system is a cable(Ger: Kabel).
- For the first calculation rule, the damping function $a_\text{K}(f)$ must be used in $\rm dB$ (decibel).
- For the first calculation rule, the damping function $a_\text{K, Np}(f)$ must be used in $\rm Np$ (Neper).
- The following conversions apply: $\rm 1 \ dB = 0.05 \cdot \ln (10) \ Np= 0.1151 \ Np$ or $\rm 1 \ Np = 20 \cdot \lg (e) \ dB= 8.6859 \ dB$.
- This applet exclusively uses dB values.
Attenuation Function of a Coaxial Cable
According to [Wel77][1] the Attenuation Function of a Coaxial Cable of length $l$ is given as follows:
- $$a_{\rm K}(f)=(\alpha_0+\alpha_1\cdot f+\alpha_2\cdot \sqrt{f}) \cdot l.$$
- It is important to note the difference between $a_{\rm K}(f)$ in $\rm dB$ and the „alpha” coefficient with other pseudo–units.
- The attenuation function $a_{\rm K}(f)$ is directly proportional to the cable length $l$; $a_{\rm K}(f)/l$ is referred to as the „attenuation factor” or „kilometric attenuation”.
- The frequency-independent component $α_0$ of the attenuation factor takes into account the Ohmic losses.
- The frequency proportional portion $α_1 · f$ of the attenuation factor is due to the derivation losses („crosswise loss”) .
- the dominant portion $α_2$ goes back to Skineffekt, which causes a lower current density inside the conductor compared to its surface. As a result, the resistance of an electric line increases with the square root of the frequency.
The constants for the standard coaxial cable with a 2.6 mm inner diameter and a 9.5 mm outer diameter ⇒ short Coax (2.6/9.5 mm) are:
- $$\alpha_0 = 0.014\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0038\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 2.36\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
The same applies to the coaxial coaxial cable' ⇒ short Coax (1.2/4.4 mm):
- $$\alpha_0 = 0.068\, \frac{ {\rm dB} }{ {\rm km} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_1 = 0.0039\, \frac{ {\rm dB} }{ {\rm km \cdot MHz} }\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 =5.2\, \frac{ {\rm dB} }{ {\rm km \cdot \sqrt{MHz} } }\hspace{0.05cm}.$$
These values can be calculated from the cables' geometric dimensions and have been confirmed by measurements at the Fernmeldetechnisches Zentralamt in Darmstadt – see [Wel77][1] . They are valid for a temperature of 20 ° C (293 K) and frequencies greater than 200 kHz.
Attenuation Function of a Two–wired Line
According to [PW95][2] the attenuation function of a Two–wired Line of length $l$ is given as follows:
- $$a_{\rm K}(f)=(k_1+k_2\cdot (f/{\rm MHz})^{k_3}) \cdot l.$$
This function is not directly interpretable, but is a phenomenological description.
[PW95][2]also provides the constants determined by measurement results:
- $d = 0.35 \ {\rm mm}$: $k_1 = 7.9 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 15.1 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.62$,
- $d = 0.40 \ {\rm mm}$: $k_1 = 5.1 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 14.3 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.59$,
- $d = 0.50 \ {\rm mm}$: $k_1 = 4.4 \ {\rm dB/km}, \hspace{0.2cm}k_2 = 10.8 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.60$,
- $d = 0.60 \ {\rm mm}$: $k_1 = 3.8 \ {\rm dB/km}, \hspace{0.2cm}k_2 = \hspace{0.25cm}9.2 \ {\rm dB/km}, \hspace{0.2cm}k_3 = 0.61$.
From these numerical values one recognizes:
- The attenuation factor $α(f)$ and the attenuation function $a_{\rm K}(f) = α(f) · l$ depend significantly on the pipe diameter. The cables laid since 1994 with $d = 0.35 \ \rm (mm)$ and $d = 0.5$ mm have a 10% greater attenuation factor than the older lines with $d = 0.4$ or $d= 0.6$.
- However, this smaller diameter, which is based on the manufacturing and installation costs, significantly reduces the range $l_{\rm max}$ of the transmission systems used on these lines, so that in the worst case scenario expensive intermediate generators have to be used.
- The current transmission methods for copper lines prove only a relatively narrow frequency band, for example $120\ \rm kHz$ with ISDN and ca. $1100 \ \rm kHz$ with DSL. For $f = 1 \ \rm MHz$ the attenuation factor of a 0.4 mm cable is around $20 \ \rm dB/km$, so that even with a cable length of $l = 4 \ \rm km$ the Attenuation does not exceed $80 \ \rm dB$.
Conversion Between $k$ and $\alpha$ parameters
The $k$–parameters of the attenuation factor ⇒ $\alpha_{\rm I} (f)$ can be converted into corresponding $\alpha$–parameters ⇒ $\alpha_{\rm II} (f)$:
- $$\alpha_{\rm I} (f) = k_1 + k_2 \cdot (f/f_0)^{k_3}\hspace{0.05cm}, \hspace{0.2cm}{\rm mit} \hspace{0.15cm} f_0 = 1\,{\rm MHz},$$
- $$\alpha_{\rm II} (f) = \alpha_0 + \alpha_1 \cdot f + \alpha_2 \cdot \sqrt {f}.$$
As a criterion of this conversion, we assume that the quadratic deviation of these two functions is minimal within a bandwidth $B$:
- $$\int_{0}^{B} \left [ \alpha_{\rm I} (f) - \alpha_{\rm II} (f)\right ]^2 \hspace{0.1cm}{\rm d}f \hspace{0.3cm}\Rightarrow \hspace{0.3cm}{\rm Minimum} \hspace{0.05cm} .$$
It is obvious that $α_0 = k_1$. The parameters $α_1$ and $α_2$ are dependent on the underlying bandwidth $B$ and are:
- $$\begin{align*}\alpha_1 & = 15 \cdot (B/f_0)^{k_3 -1}\cdot \frac{k_3 -0.5}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{ {f_0} }\hspace{0.05cm} ,\\ \alpha_2 & = 10 \cdot (B/f_0)^{k_3 -0.5}\cdot \frac{1-k_3}{(k_3 + 1.5)(k_3 + 2)}\cdot {k_2}/{\sqrt{f_0} }\hspace{0.05cm} .\end{align*}$$
$\text{Example 1:}$
- For $k_3 = 1$ (frequency proportional attenuation factor) we get $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_1 = {k_2}/{ {f_0} }\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = 0\hspace{0.05cm} .$
- For $k_3 = 0.5$ (Skin effect) we get the coefficients: $\alpha_0 = k_0\hspace{0.05cm} ,\hspace{0.2cm}\alpha_1 = 0\hspace{0.05cm} ,\hspace{0.2cm} \alpha_2 = {k_2}/{\sqrt{f_0} }\hspace{0.05cm}.$
- For $k_3 < 0.5$ we get a negative $\alpha_1$. Conversion is only possible for $0.5 \le k_3 \le 1$.
Umrechnung in Gegenrichtung
Fehlt noch
Channel Influence on the Binary Nyquistent Equalization
Going by the block diagram: Between the Dirac source and the decider are the frequency responses for the transmitter ⇒ $H_{\rm S}(f)$, Channel ⇒ $H_{\rm K}(f)$ and receiver ⇒ $H_{\rm E}(f)$.
In this applet
- we neglect the influence of the transmitted pulse form ⇒ $H_{\rm S}(f) \equiv 1$ ⇒ dirac shaped transmission signal $s(t)$,
- presuppose a binary Nyquist system with cosine–roll-off around the Nyquistf requency $f_{\rm Nyq} = [f_1 + f_2]/2 =1(2T)$ :
- $$H_{\rm K}(f) · H_{\rm E}(f) = H_{\rm CRO}(f).$$
This means: The first Nyquist criterion is met ⇒
Timely successive impulses do not disturb each other ⇒ there are no Intersymbol Interferences.
In the case of white noise, the transmission quality is thus determined solely by the noise power in front of the receiver:
- $$P_{\rm N} =\frac{N_0}{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \ {\rm d}f\hspace{1cm}\text{mit}\hspace{1cm}|H_{\rm E}(f)|^2 = \frac{|H_{\rm CRO}(f)|^2}{|H_{\rm K}(f)|^2}.$$
The lowest possible noise performance results with an ideal channel ⇒ $H_{\rm K}(f) \equiv 1$ and a rectangular $H_{\rm CRO}(f) \equiv 1$ in $|f| \le f_{\rm Nyq}$:
- $$P_\text{N, min} = P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=0 \big ] = N_0 \cdot f_{\rm Nyq} .$$
$\text{Definitions:}$
- As a quality criterion for a given system we use the total efficiency:
- $$\eta_\text{K+R} = \frac{P_{\rm N} \ \big [\text{Given system: Channel }H_{\rm K}(f), \ \text{Roll-off factor }r \big ]}{P_{\rm N} \ \big [\text{optimal system: }H_{\rm K}(f) \equiv 1, \ r=0 \big ]} =\frac{1}{f_{\rm Nyq} } \cdot \int_{0}^{+\infty} \vert H_{\rm E}(f) \vert^2 \ {\rm d}f \le 1.$$
This system size is specified in the applet for both parameter sets in logarithm form: $10 \cdot \lg \ \eta_\text{K+R} \le 0 \ \rm dB$.
- Through variation and optimization of the Roll-off factor $r$ we get the Channel efficiency:
- $$\eta_\text{K} = \min_{0 \le r \le 1} \ \eta_\text{K+R} .$$
$\text{Beispiel 2:}$ The graph shows the square value frequency response $\left \vert H_{\rm E}(f)\right \vert ^2 $ mit $\left \vert H_{\rm E}(f)\right \vert = H_{\rm CRO}(f) / \left \vert H_{\rm K}(f)\right \vert$ for the following boundary conditions:
- Attenuation function of the channel: $a_{\rm K}(f) = 1 \ {\rm dB} \cdot \sqrt{f/\ {\rm MHz} }$,
- Nyquist frequency: : $f_{\rm Nyq} = 20 \ {\rm MHz}$, Roll-off factor $r = 0.5$
This results in the following consequences:
- In the area up to $f_{1} = 10 \ {\rm MHz: }$ $H_{\rm CRO}(f) = 1$ ⇒ $\left \vert H_{\rm E}(f)\right \vert ^2 = \left \vert H_{\rm K}(f)\right \vert ^{-2}$ (see yellow deposit).
- The flank of $H_{\rm CRO}(f)$ is only effective from $f_{1}$ to $f_{2} = 30 \ {\rm MHz}$ and $\left \vert H_{\rm E}(f)\right \vert ^2$ decreases more and more.
- The maximum of $\left \vert H_{\rm E}(f_{\rm max})\right \vert ^2$ at $f_{\rm max} \approx 11.5 \ {\rm MHz}$ is twice the value of $\left \vert H_{\rm E}(f = 0)\right \vert ^2 = 1$.
- The integral over $\left \vert H_{\rm E}(f)\right \vert ^2$ is a measure of the effective noise power. In the current example this is $4.6$ times bigger than the minimal noise power (for $a_{\rm K}(f) = 0 \ {\rm dB}$ and $r=1$) ⇒ $10 \cdot \lg \ \eta_\text{K+E} \approx - 6.6 \ {\rm dB}.$
Exercises
- First choose an exercise number.
- An exercise description is displayed.
- Parameter values are adjusted to the respective exercises.
- Click „Hide solition” to display the solution.
- Exercise description and solution in english
Number „0” is a „Reset” button:
- Sets parameters to initial values (when loading the page).
- Displays a „Reset text” to describe the applet further.
In der folgenden Beschreibung bedeutet
- Blau: Verteilungsfunktion 1 (im Applet blau markiert),
- Rot: Verteilungsfunktion 2 (im Applet rot markiert).
(1) First set Blue to $\text{Coax (1.2/4.4 mm)}$ and then to $\text{Coax (2.6/9.5 mm)}$. The cable length is $l_{\rm Blue}= 5\ \rm km$.
- Interpret $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$, in particular the functional values $a_{\rm K}(f = f_\star = 30 \ \rm MHz)$ and $\vert H_{\rm K}(f = 0) \vert$.
$\Rightarrow\hspace{0.3cm}\text{The attenuation function increases approximately }\sqrt{f}\text{ and the magnitude frequency response falls similarly to an exponential function};$
$\hspace{1.15cm}\text{Coax (1.2/4.4 mm): }a_{\rm K}(f = f_\star) = 143.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.96.$
$\hspace{1.15cm}\text{Coax (2.6/9.5 mm): }a_{\rm K}(f = f_\star) = 65.3\text{ dB;}\hspace{0.5cm}\vert H_{\rm K}(f = 0) \vert = 0.99;$
(2) Set Blue to $\text{Coax (1.2/4.4 mm)}$ and $l_{\rm Blue} = 3\ \rm km$. How is $a_{\rm K}(f =f_\star = 30 \ \rm MHz)$ affected by $\alpha_0$, $\alpha_1$ und $\alpha_2$?
$\Rightarrow\hspace{0.3cm}\alpha_2\text{is crucial (Skin effect). The contributions of } \alpha_0\text{ (ca. 0.1 dB) and }\alpha_1 \text{ (ca. 0.6 dB) are comparatively small.}$
(3) Additionally, set Red to $\text{Two–wired Line (0.5 mm)}$ and $l_{\rm Red} = 1\ \rm km$. What is the resulting value for $a_{\rm K}(f =f_\star= 30 \ \rm MHz)$?
- Up to what length $l_{\rm Red}$ does the red attenuation function go under the blue one?
$\Rightarrow\hspace{0.3cm}\text{Red curve: }a_{\rm K}(f = f_\star) = 87.5 {\ \rm dB} \text{. The above condition is fulfilled for }l_{\rm Red} = 0.7\ {\rm km} \ \Rightarrow \ a_{\rm K}(f = f_\star) = 61.3 {\ \rm dB}.$
(4) Set Red to ${k_1}' = 0, {k_2}' = 10, {k_3}' = 0.75, {l_{\rm red} } = 1 \ \rm km$ and vary the Parameter $0.5 \le k_3 \le 1$.
- What observations can be made based on $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$?
$\Rightarrow\hspace{0.3cm}\text{With }k_2\text {being constant, }a_{\rm K}(f)\text{ increases with bigger values of }k_3\text{ and }\vert H_{\rm K}(f) \vert \text{ decreases faster and faster. With }k_3 =1: a_{\rm K}(f)\text{ rises linearly.}$
$\hspace{1.15cm}\text{With, }k_3 \to 0.5\text{ the attenuation function is more and more determined by the skin effect, same as the coaxial cable.}$
(5) Set Red to $\text{Two–wired Line (0.5 mm)}$ and Blue to $\text{Conversion of Red}$. For the length use $l_{\rm Rot} = l_{\rm Blau} = 1\ \rm km$.
- Analyse and interpret the displayed functions $a_{\rm K}(f)$ and $\vert H_{\rm K}(f) \vert$.
$\Rightarrow\hspace{0.3cm}\text{Very good approximation of the two-wire line through the blue parameter set, both with regard to }a_{\rm K}(f) \text{, as well as }\vert H_{\rm K}(f) \vert.$
(6) We assume the settings of (5). Which parts of the attenuation function are due to ohmic loss, lateral losses and skin effect?
$\Rightarrow\hspace{0.3cm}\text{Solution based on '''Blue''': }a_{\rm K}(f = f_\star= 30 \ {\rm MHz}) = 88.1\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0\text{: }83.7\ {\rm dB}, \hspace{0.2cm}\text{without }\alpha_0 \text{ and } \alpha_1\text{: }60.9\ {\rm dB}.$
$\hspace{1.15cm}\text{With a two-wire cable, the influence of the longitudinal and transverse losses is significantly greater than with a coaxial cable.}$
(7) Set Blue to ${\alpha_0}' = {\alpha_1}' ={\alpha_2}' = 0$ and Red to ${k_1}' = 2, {k_2}' = 0, {l_{\rm red} } = 1 \ \rm km$. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.5$.
- How big is the total efficiency $\eta_\text{K+E}$ and the channel efficiency $\eta_\text{K}$?
$\Rightarrow\hspace{0.3cm}10 \cdot \lg \ \eta_\text{K+E} = -0.7\ \ {\rm dB}\text{ (Blue: ideal system) and }10 \cdot \lg \ \eta_\text{K+E} = -2.7\ \ {\rm dB}\text{ (Red: DC signal attenuation only)}$.
$\hspace{0.95cm}\text{The best possible rolloff factor is }r = 1.\text{ Therefore }10 \cdot \lg \ \eta_\text{K} = 0 \ {\rm dB}\text{ (Blue) or }10 \cdot \lg \ \eta_\text{K} = -2\ {\rm dB}\text{ (Red)}.$
(8) The same settings apply as in (7). Under what transmission power $P_{\rm red}$ in respect to $P_{\rm blue}$ do both systems achieve the same error probability?
$\Rightarrow\hspace{0.3cm}\text{It has to apply: }10 \cdot \lg \ P_{\rm red}/P_{\rm blue} =2 \ {\rm dB} \ \ \text{ ⇒ } \ \ P_{\rm red}/P_{\rm blue} = 10^{0.2} = 1.585.$
(9) Set Blue tof ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 2$ and Red to „Inactive”. Additionally set ${f_{\rm Nyq} }' =15$ and $r= 0.7$.
- What course does $\vert H_{\rm E}(f) \vert have$? Calculate the total efficiency $\eta_\text{K+E}$ and the channel efficiency$\eta_\text{K}$
$\Rightarrow\hspace{0.3cm}\text{For} f < 7.5 {\ \rm MHz: } \vert H_{\rm E}(f) \vert = \vert H_{\rm K}(f) \vert ^{-1}.\text{ For }(f > 25 {\ \rm MHz): }\vert H_{\rm E}(f) \vert = 0.\text{ Inbetween is the effect of the CRO–flank.}$
$\hspace{0.95cm}\text{The best possible rolloff factor }r = 0.5\text{is already set: }\Rightarrow \ 10 \cdot \lg \ \eta_\text{K+E} = 10 \cdot \lg \ \eta_\text{K} \approx - 18.1 \ {\rm dB}.$
(10) Set Blue to ${\alpha_0}' = {\alpha_1}' = 0, \ {\alpha_2}' = 3, \ {l_{\rm blue} }' = 8$ and Red to „Inactive”. Additionally, set ${f_{\rm Nyq} }' =15$ and $r= 0.5$.
- How big is $\vert H_{\rm E}(f = 0) \vert$? What is the maximum value of $\vert H_{\rm E}(f) \vert$? Calculate the channel efficiency $\eta_\text{K}$
$\Rightarrow\hspace{0.3cm}\vert H_{\rm E}(f = 0) \vert = \vert H_{\rm E}(f = 0) \vert ^{-1}= 1 \text{ and the maximum value } \vert H_{\rm E}(f) \vert \text{ is approximately }37500\text{ for }r=0.7 \Rightarrow 10 \cdot \lg \ \eta_\text{K+E} \approx -89.2 \ {\rm dB},$
$\hspace{0.95cm}\text{because the integral over }\vert H_{\rm E}(f) \vert^2\text{is huge. After the optimization }r=0.17 \text{ we get }10 \cdot \lg \ \eta_\text{K} \approx -82.6 \ {\rm dB}.$
(11) The same settings apply as in (10) and $r= 0.17$. Vary the cable length up to $l_{\rm blue} =10 \ \rm km$.
- How much does the maximum value of $\vert H_{\rm E}(f) \vert$, the channel efficiency $\eta_\text{K}$ and the optimal rolloff factor $r_{\rm opt}$ change?
$\Rightarrow\hspace{0.3cm}\text{The maximum value of } \vert H_{\rm E}(f) \vert \text{ increases and }10 \cdot \lg \ \eta_\text{K} \text{ decreases more and more.}$
$\hspace{0.95cm}\text{At 10 km length } 10 \cdot \lg \ \eta_\text{K} \approx -104.9 \ {\rm dB} \text{ and } r_{\rm opt}=0.14\text{. For }f_\star \approx 14.5\ {\rm MHz} \Rightarrow \vert H_{\rm E}(f = f_\star) = 352000 \cdot \approx \vert H_{\rm E}(f =0)\vert$.
Vorgeschlagene Parametersätze
(1) Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=20$, $a_1=0$, $a_2=0$:
Konstante Werte $a_K=20$ dB und $\left| H_K(f)\right|=0.1$. Nur Ohmsche Verluste werden berücksichtigt.
(2) Parameter wie (1), aber zusätzlich $a_1=1$ dB/(km · MHz):
Linearer Anstieg von $a_K(f)$ zwischen $20$ dB und $50$ dB, $\left| H_K(f)\right|$ fällt beidseitig exponentiell ab.
(3) Parameter wie (1), aber $a_0=0$, $a_1=0$, $a_2=1$ dB/(km · MHz1/2).
$a_K(f)$ und $\left| H_K(f)\right|$ werden ausschließlich durch den Skineffekt bestimmt. $a_K(f)$ ist proportional zu $f^{1/2}$.
(4) Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel $2.6/9.5$ mm“ (Normalkoaxialkabel):
Es überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=13.05$ dB; ohne $a_0$: $13.04$ dB, ohne $a_1=12.92$ dB.
(5) Parameter wie (1), aber nun mit der Einstellung „Koaxialkabel $1.2/4.4$ mm“ (Kleinkoaxialkabel):
Wieder überwiegt der Skineffekt; $a_k$ ($f=30$ MHz)$=28.66$ dB; ohne $a_0$: $28.59$ dB, ohne $a_1=28.48$ dB.
(6) Nur roter Parametersatz, $l=1 km$, $b=30$ MHz, $r=0$, Einstellung „Zweidrahtleitung $0.4$ mm“.
Skineffekt ist auch hier dominant; $a_k$ ($f=30$ MHz)$=111.4$ dB; ohne $k_1$: $106.3$ dB.
(7) Parameter wie (6), aber nun Halbierung der Kabellänge ($l=0.5$ km):
Auch die Dämpfungswerte werden halbiert: $a_k$ ($f=30$ MHz)$=55.7$ dB; ohne $k_1$: $53.2$ dB.
(8) Parameter wie (7), dazu im blauen Parametersatz die umgerechneten Werte der Zweidrahtleitung:
Sehr gute Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.4$ dB.
(9) Parameter wie (8), aber nun Approximation auf die Bandbreite $B=20$ MHz:
Noch bessere Approximation der $k$-Parameter durch die $a$-Parameter; Abweichung < $0.15$ dB.
(10) Nur blauer Parametersatz, $l=1$ km, $B=30$ MHz, $r=0$, $a_0=a_1=a_2=0$; unten Darstellung $\left| H_K(f)\right|^2$:
Im gesamten Bereich ist $\left| H_K(f)\right|^2=1$; der Integralwert ist somit $2B=60$ (in MHz).
(11) Parameter wie (10), aber nun mit Einstellung „Koaxialkabel $2.6/9.5$ mm“ (Normalkoaxialkabel):
$\left| H_K(f)\right|^2$ ist bei $f=1$ etwa $1$ und steigt zu den Rändern bis ca. $20$. Der Integralwert ist ca. $550$.
(12) Parameter wie (11), aber nun mit der deutlich größeren Kabellänge $l=5$ km:
Deutliche Verstärkung des Effekts; Anstieg bis ca. $3.35\cdot 10^6$ am Rand und Integralwert $2.5\cdot 10^7$.
(13) Parameter wie (12), aber nun mit Rolloff-Faktor $r=0.5$:
Deutliche Abschwächung des Effekts; Anstieg bis ca. $5.25\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.07\cdot 10^6$.
(14) Parameter wie (13), aber ohne Berücksichtigung der Ohmschen Verluste ($a_0=0$):
Nahezu gleichbleibendes Ergebnis; Anstieg bis ca. $5.15\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $1.05\cdot 10^6$.
(15) Parameter wie (14), aber auch ohne Berücksichtigung der Querverluste ($a_1=0$):
Ebenfalls kein großer Unterschied; Anstieg bis ca. $4.74\cdot 10^4$ ($f$ ca. $20$ MHz), Integralwert ca. $0.97\cdot 10^6$.
(16) Nur roter Parametersatz, $l=1$ km, $B=30$ MHz, $r=0.5$, Einstellung „Zweidrahtleitung $0.4$ mm“:
Anstieg bis ca. $3\cdot 10^8$ ($f$ ca. $23$ MHz), Integralwert ca. $4.55\cdot 10^9$; ohne $k_1$: $0.93\cdot 10^8$ ($f$ ca. $23$ MHz) bzw. $1.41\cdot 10^9$.
Quellenverzeichnis
- ↑ 1.0 1.1 Wellhausen, H. W.: Dämpfung, Phase und Laufzeiten bei Weitverkehrs–Koaxialpaaren. Frequenz 31, S. 23-28, 1977.
- ↑ 2.0 2.1 Pollakowski, M.; Wellhausen, H.W.: Eigenschaften symmetrischer Ortsanschlusskabel im Frequenzbereich bis 30 MHz. Mitteilung aus dem Forschungs- und Technologiezentrum der Deutschen Telekom AG, Darmstadt, Verlag für Wissenschaft und Leben Georg Heidecker, 1995.