Difference between revisions of "Aufgaben:Exercise 4.5Z: Impulse Response once again"
Line 87: | Line 87: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Die Spektraldarstellung eines Laufzeitgliedes lautet ${\rm e}^{-{\rm j} 2 \pi f \tau}$. Ein Vergleich mit der Angabenseite zeigt, dass $H_1(f)$ genau diesem Ansatz genügt | + | '''(1)''' Richtig ist <u>nur die Aussage 1</u>: |
+ | *Die Spektraldarstellung eines Laufzeitgliedes lautet ${\rm e}^{-{\rm j} 2 \pi f \tau}$. | ||
+ | *Ein Vergleich mit der Angabenseite zeigt, dass $H_1(f)$ genau diesem Ansatz genügt. | ||
+ | |||
'''(2)''' Entsprechend dem Angabenblatt gilt: | '''(2)''' Entsprechend dem Angabenblatt gilt: | ||
− | $$2\pi \cdot f \cdot \tau = \beta_1 \cdot f \cdot l \Rightarrow \hspace{0.3cm}\tau= \frac {\beta_1 \cdot l}{2\pi} = | + | :$$2\pi \cdot f \cdot \tau = \beta_1 \cdot f \cdot l \Rightarrow \hspace{0.3cm}\tau= \frac {\beta_1 \cdot l}{2\pi} = |
\frac {21.78\, {\rm rad}/{({\rm km \cdot MHz})}\cdot 10\,{\rm km}}{2\pi} = | \frac {21.78\, {\rm rad}/{({\rm km \cdot MHz})}\cdot 10\,{\rm km}}{2\pi} = | ||
− | 34.7\,{\rm | + | 34.7\,{\rm µ s}$$ |
− | $$\Rightarrow \hspace{0.3cm}\tau '= {\tau}/{T} = 694 \Rightarrow \hspace{0.3cm} | + | :$$\Rightarrow \hspace{0.3cm}\tau '= {\tau}/{T} = 694 \Rightarrow \hspace{0.3cm} |
− | T = \frac {34.7\,{\rm | + | T = \frac {34.7\,{\rm µ s}}{700} \approx |
− | 0.05\,{\rm | + | 0.05\,{\rm µ s}\hspace{0.05cm}.$$ |
Die Bitrate ist gleich dem Kehrwert der Symboldauer: $\underline{R = 20 \ \rm Mbit/s}$. | Die Bitrate ist gleich dem Kehrwert der Symboldauer: $\underline{R = 20 \ \rm Mbit/s}$. | ||
'''(3)''' Für die charakteristische Kabeldämpfung erhält man somit: | '''(3)''' Für die charakteristische Kabeldämpfung erhält man somit: | ||
− | $${ | + | :$${a}_{\rm \star} = \alpha_2 \cdot \sqrt {R/2} \cdot l = |
0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot \sqrt {10\,{\rm MHz}} \cdot 10\,{\rm km} \hspace{0.15cm}\underline{\approx | 0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot \sqrt {10\,{\rm MHz}} \cdot 10\,{\rm km} \hspace{0.15cm}\underline{\approx | ||
8.6\,{\rm Np}}\hspace{0.05cm}.$$ | 8.6\,{\rm Np}}\hspace{0.05cm}.$$ | ||
− | Der entsprechende dB–Wert ist $75 \ \rm dB$. | + | Der entsprechende dB–Wert ist ${a}_{\rm \star} = 75 \ \rm dB$. |
+ | |||
'''(4)''' Mit der angegebenen Gleichung und dem Ergebnis der Teilaufgabe (3) ergibt sich: | '''(4)''' Mit der angegebenen Gleichung und dem Ergebnis der Teilaufgabe (3) ergibt sich: | ||
− | $${\rm Max}[T \cdot h_{\rm K}(t)] \approx | + | :$${\rm Max}\, [T \cdot h_{\rm K}(t)] \approx |
− | \frac {1.453 }{{ | + | \frac {1.453 }{{a}_{\rm \star}^2} = \frac {1.453 }{8.6^2} |
\hspace{0.15cm}\underline{ \approx 0.02}\hspace{0.05cm}.$$ | \hspace{0.15cm}\underline{ \approx 0.02}\hspace{0.05cm}.$$ | ||
− | '''(5)''' Richtig ist <u>nur Aussage 1</u>: $H_1(f)$ beschreibt die frequenzunabhängige Laufzeit, die keine Verzerrung zur Folge hat. | + | |
+ | '''(5)''' Richtig ist <u>nur die Aussage 1</u>: $H_1(f)$ beschreibt die frequenzunabhängige Laufzeit, die keine Verzerrung zur Folge hat. | ||
Dagegen sollte man zur Berechnung der Impulsantwort auf keinen Fall auf $H_2(f)$ oder $H_3(f)$ verzichten, da es sonst es zu gravierenden Fehlern kommen würde: | Dagegen sollte man zur Berechnung der Impulsantwort auf keinen Fall auf $H_2(f)$ oder $H_3(f)$ verzichten, da es sonst es zu gravierenden Fehlern kommen würde: | ||
* Die Impulsantwort $h_2(t)$ als die Fourierrücktransformierte von $H_2(f)$ ist eine gerade Funktion mit dem Maximum bei $t = 0$ und erstreckt sich in beide Richtungen über Hunderte von Symbolen. | * Die Impulsantwort $h_2(t)$ als die Fourierrücktransformierte von $H_2(f)$ ist eine gerade Funktion mit dem Maximum bei $t = 0$ und erstreckt sich in beide Richtungen über Hunderte von Symbolen. | ||
− | * Dagegen ist die Fourierrücktransformierte von $H_3(f)$ eine ungerade Funktion mit einer Sprungstelle bei $t = 0$. Für $t > 0$ fällt $h_3(t)$ ähnlich – aber nicht exakt – wie eine Exponentialfunktion ab. Für negative Zeiten $t$ gilt $h_3(t) = - h_3(|t|)$. | + | * Dagegen ist die Fourierrücktransformierte von $H_3(f)$ eine ungerade Funktion mit einer Sprungstelle bei $t = 0$. |
+ | *Für $t > 0$ fällt $h_3(t)$ ähnlich – aber nicht exakt – wie eine Exponentialfunktion ab. Für negative Zeiten $t$ gilt $h_3(t) = - h_3(|t|)$. | ||
* Erst die Faltung $h_2(t) \star h_3(t)$ liefert die kausale Impulsantwort, allerdings ohne die Phasenlaufzeit $\tau$, die durch $H_1(f)$ berücksichtigt wird. | * Erst die Faltung $h_2(t) \star h_3(t)$ liefert die kausale Impulsantwort, allerdings ohne die Phasenlaufzeit $\tau$, die durch $H_1(f)$ berücksichtigt wird. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 16:00, 28 March 2018
Wir betrachten wieder wie in der Aufgabe 4.5 ein binäres Übertragungssystem mit der Bitrate $R$ und der Symboldauer $T= 1/R$.
Als Übertragungsmedium wird ein Normalkoaxialkabel (Innendurchmesser: 2.6 mm, Außendurchmesser: 9.5 mm) der Länge $l = 1 \ \rm km$ mit folgendem Frequenzgang verwendet:
- $$H_{\rm K}(f) = {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \beta_1 \hspace{0.05cm}\cdot \hspace{0.05cm} f \hspace{0.05cm}\cdot \hspace{0.05cm}l} \cdot {\rm e}^{- \alpha_2 \hspace{0.01cm} \sqrt{f} \hspace{0.05cm}l} \cdot {\rm e}^{-{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm} \beta_2 \hspace{0.05cm}\cdot \hspace{0.05cm} \sqrt{f} \hspace{0.05cm}\cdot \hspace{0.05cm}l} = H_1(f) \cdot H_2(f) \cdot H_3(f)$$
Die Teilfrequenzgänge $H_1(f)$, $H_2(f)$ und $H_3(f)$ dienen hier nur als Abkürzung. Die Leitungsparameter lauten:
- $$\beta_1 = 21.78\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm}, \hspace{0.2cm} \alpha_2 = 0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}}\hspace{0.05cm},\hspace{0.2cm} \beta_2 = 0.2722\, \frac{\rm rad}{\rm km \cdot \sqrt{MHz}} \hspace{0.05cm}.$$
Die Grafik zeigt die resultierende Impulsantwort $h_{\rm K}(t\hspace{0.03cm}')$, wobei $t\hspace{0.03cm}' = t/T$ die normierte Zeit darstellt. Ohne Berücksichtigung der (normierten) Phasenlaufzeit $\tau\hspace{0.03cm}' = \tau/T$ kann $h_{\rm K}(t\hspace{0.03cm}')$ wie folgt geschrieben werden:
- $$h_{\rm K}(t') = \frac {1}{T} \cdot \frac {a_\rm \star/\pi}{ \sqrt{2 \hspace{0.05cm}t'^3}}\cdot {\rm exp} \left [ -\frac {a_\rm \star^2}{ {2\pi \hspace{0.05cm}t'}} \right ] \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm} {\rm mit}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm} {\rm in}\hspace{0.15cm} {\rm Neper}\hspace{0.05cm}.$$
Diese Gleichung gibt die Fourierrücktransformierte des Produkts $H_2(f) \cdot H_3(f)$ an. Verwendet ist dabei die charakteristische Kabeldämpfung ${a}_{\rm \star} = \alpha_2 \cdot \sqrt {R/2} \cdot l \hspace{0.05cm}.$
Hinweise:
- Die Aufgabe gehört zum Kapitel Eigenschaften von Koaxialkabeln.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Sie können zur Überprüfung Ihrer Ergebnisse das interaktive Applet Zeitverhalten von Kupferkabeln benutzen.
- In der Aufgabe 4.5 wurde der Maximalwert der normierten Impulsantwort wie folgt berechnet:
- $${\rm Max}\, [T \cdot h_{\rm K}(t)] = \frac {\sqrt{13.5 \pi} \cdot {\rm e}^{-1.5} }{{a}_{\rm \star}^2} \approx \frac {1.453 }{{a}_{\rm \star}^2} \hspace{0.05cm}, \hspace{0.2cm} \hspace{0.15cm} {\rm mit}\hspace{0.15cm}{a}_{\rm \star}\hspace{0.15cm} {\rm in}\hspace{0.15cm} {\rm Neper}\hspace{0.05cm}.$$
Fragebogen
Musterlösung
- Die Spektraldarstellung eines Laufzeitgliedes lautet ${\rm e}^{-{\rm j} 2 \pi f \tau}$.
- Ein Vergleich mit der Angabenseite zeigt, dass $H_1(f)$ genau diesem Ansatz genügt.
(2) Entsprechend dem Angabenblatt gilt:
- $$2\pi \cdot f \cdot \tau = \beta_1 \cdot f \cdot l \Rightarrow \hspace{0.3cm}\tau= \frac {\beta_1 \cdot l}{2\pi} = \frac {21.78\, {\rm rad}/{({\rm km \cdot MHz})}\cdot 10\,{\rm km}}{2\pi} = 34.7\,{\rm µ s}$$
- $$\Rightarrow \hspace{0.3cm}\tau '= {\tau}/{T} = 694 \Rightarrow \hspace{0.3cm} T = \frac {34.7\,{\rm µ s}}{700} \approx 0.05\,{\rm µ s}\hspace{0.05cm}.$$
Die Bitrate ist gleich dem Kehrwert der Symboldauer: $\underline{R = 20 \ \rm Mbit/s}$.
(3) Für die charakteristische Kabeldämpfung erhält man somit:
- $${a}_{\rm \star} = \alpha_2 \cdot \sqrt {R/2} \cdot l = 0.2722\, \frac{\rm Np}{\rm km \cdot \sqrt{MHz}} \cdot \sqrt {10\,{\rm MHz}} \cdot 10\,{\rm km} \hspace{0.15cm}\underline{\approx 8.6\,{\rm Np}}\hspace{0.05cm}.$$
Der entsprechende dB–Wert ist ${a}_{\rm \star} = 75 \ \rm dB$.
(4) Mit der angegebenen Gleichung und dem Ergebnis der Teilaufgabe (3) ergibt sich:
- $${\rm Max}\, [T \cdot h_{\rm K}(t)] \approx \frac {1.453 }{{a}_{\rm \star}^2} = \frac {1.453 }{8.6^2} \hspace{0.15cm}\underline{ \approx 0.02}\hspace{0.05cm}.$$
(5) Richtig ist nur die Aussage 1: $H_1(f)$ beschreibt die frequenzunabhängige Laufzeit, die keine Verzerrung zur Folge hat.
Dagegen sollte man zur Berechnung der Impulsantwort auf keinen Fall auf $H_2(f)$ oder $H_3(f)$ verzichten, da es sonst es zu gravierenden Fehlern kommen würde:
- Die Impulsantwort $h_2(t)$ als die Fourierrücktransformierte von $H_2(f)$ ist eine gerade Funktion mit dem Maximum bei $t = 0$ und erstreckt sich in beide Richtungen über Hunderte von Symbolen.
- Dagegen ist die Fourierrücktransformierte von $H_3(f)$ eine ungerade Funktion mit einer Sprungstelle bei $t = 0$.
- Für $t > 0$ fällt $h_3(t)$ ähnlich – aber nicht exakt – wie eine Exponentialfunktion ab. Für negative Zeiten $t$ gilt $h_3(t) = - h_3(|t|)$.
- Erst die Faltung $h_2(t) \star h_3(t)$ liefert die kausale Impulsantwort, allerdings ohne die Phasenlaufzeit $\tau$, die durch $H_1(f)$ berücksichtigt wird.