Difference between revisions of "Aufgaben:Exercise 1.6Z: Ergodic Probabilities"
Line 60: | Line 60: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Gemäß der Angabe gilt $p = 1 - p$ | + | '''(1)''' Gemäß der Angabe gilt $p = 1 - p$ ⇒ $\underline{p =0.500}$ und $q = (1 - q)/2$, ⇒ $\underline{q =0.333}$. |
+ | |||
'''(2)''' Für die Ereigniswahrscheinlichkeit von $A$ gilt: | '''(2)''' Für die Ereigniswahrscheinlichkeit von $A$ gilt: | ||
:$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7} \hspace{0.15cm}\underline {\approx0.571}.$$ | :$${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7} \hspace{0.15cm}\underline {\approx0.571}.$$ | ||
Damit ergibt sich ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$. | Damit ergibt sich ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$. | ||
+ | |||
'''(3)''' Über den Zeitpunkt $\nu-1$ ist keine Aussage getroffen. Zu diesem Zeitpunkt kann $A$ oder $B$ aufgetreten sein. Deshalb gilt: | '''(3)''' Über den Zeitpunkt $\nu-1$ ist keine Aussage getroffen. Zu diesem Zeitpunkt kann $A$ oder $B$ aufgetreten sein. Deshalb gilt: | ||
− | :$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) | + | :$${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) + q \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) |
= \frac{5}{12} \hspace{0.15cm}\underline {\approx 0.417}.$$ | = \frac{5}{12} \hspace{0.15cm}\underline {\approx 0.417}.$$ | ||
+ | |||
'''(4)''' Nach dem Satz von Bayes gilt: | '''(4)''' Nach dem Satz von Bayes gilt: | ||
:$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } = \frac{5/12 \cdot 4/7 }{3/7 } | :$${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } = \frac{5/12 \cdot 4/7 }{3/7 } | ||
= {5}/{9} \hspace{0.15cm}\underline {\approx 0.556}.$$ | = {5}/{9} \hspace{0.15cm}\underline {\approx 0.556}.$$ | ||
− | Die Wahrscheinlichkeit ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$ wurde bereits im Unterpunkt (3) berechnet. Aufgrund der Stationarität gilt ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$ und ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$. Damit erhält man für die gesuchte Rückschlusswahrscheinlichkeit nach obiger Gleichung den Wert 5/9. | + | ''Begründung:'' |
+ | *Die Wahrscheinlichkeit ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$ wurde bereits im Unterpunkt '''(3)''' berechnet. | ||
+ | *Aufgrund der Stationarität gilt ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$ und ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$. | ||
+ | *Damit erhält man für die gesuchte Rückschlusswahrscheinlichkeit nach obiger Gleichung den Wert 5/9. | ||
− | '''(5)''' Entsprechend der Teilaufgabe (2) gilt mit ${p =1/2}$ für die Wahrscheinlichkeit von $A$ allgemein: | + | |
+ | '''(5)''' Entsprechend der Teilaufgabe '''(2)''' gilt mit ${p =1/2}$ für die Wahrscheinlichkeit von $A$ allgemein: | ||
:$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$ | :$${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$ | ||
Aus $ {\rm Pr}(A) = 2/3$ folgt somit $\underline{q =0}$. | Aus $ {\rm Pr}(A) = 2/3$ folgt somit $\underline{q =0}$. | ||
+ | |||
'''(6)''' Im Fall der statistischen Unabhängigkeit muss beispielsweise gelten: | '''(6)''' Im Fall der statistischen Unabhängigkeit muss beispielsweise gelten: | ||
:$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$ | :$${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$ | ||
− | Daraus folgt $p = {\rm Pr}(A) \hspace{0.15cm}\underline {= 2/3}$ und dementsprechend $q = 1-p \hspace{0.15cm}\underline {= 1/3}$. | + | Daraus folgt $p = {\rm Pr}(A) \hspace{0.15cm}\underline {= 2/3}$ und dementsprechend $q = 1-p \hspace{0.15cm}\underline {= 1/3}$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 16:23, 1 August 2018
Wir betrachten eine homogene stationäre Markovkette erster Ordnung mit den Ereignissen $A$ und $B$ und den Übergangswahrscheinlichkeiten entsprechend dem nebenstehenden Markovdiagramm:
Für die Teilaufgaben (1) bis (4) wird vorausgesetzt:
- Nach dem Ereignis $A$ folgen $A$ und $B$ mit gleicher Wahrscheinlichkeit.
- Nach $B$ ist das Ereignis $A$ doppelt so wahrscheinlich wie $B$.
Ab Teilaufgabe (5) sind $p$ und $q$ als freie Parameter zu verstehen, während die Ereigniswahrscheinlichkeiten ${\rm Pr}(A) = 2/3$ und ${\rm Pr}(B) = 1/3$ fest vorgegeben sind.
Hinweise:
- Die Aufgabe gehört zum Kapitel Markovketten.
- Sie können Ihre Ergebnisse mit dem interaktiven Applet Ereigniswahrscheinlichkeiten einer Markovkette 1. Ordnung überprüfen.
Fragebogen
Musterlösung
(2) Für die Ereigniswahrscheinlichkeit von $A$ gilt:
- $${\rm Pr}(A) = \frac{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)}{{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)+{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A)} = \frac{1-q}{1-q+1-p} = \frac{2/3}{2/3 + 1/2}= \frac{4}{7} \hspace{0.15cm}\underline {\approx0.571}.$$
Damit ergibt sich ${\rm Pr}(B)= 1 - {\rm Pr}(A) = 3/7 \hspace{0.15cm}\underline {\approx 0.429}$.
(3) Über den Zeitpunkt $\nu-1$ ist keine Aussage getroffen. Zu diesem Zeitpunkt kann $A$ oder $B$ aufgetreten sein. Deshalb gilt:
- $${\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.15cm} +\hspace{0.15cm} {\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) \hspace{0.05cm} \cdot \hspace{0.05cm}{\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) = p \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) + q \hspace{0.1cm} \cdot \hspace{0.1cm} (1-p) = \frac{5}{12} \hspace{0.15cm}\underline {\approx 0.417}.$$
(4) Nach dem Satz von Bayes gilt:
- $${\rm Pr}(A_{\nu -2} \hspace{0.05cm} | \hspace{0.05cm}B_{\nu}) = \frac{{\rm Pr}(B_{\nu} \hspace{0.05cm} | \hspace{0.05cm}A_{\nu -2}) \cdot {\rm Pr}(A_{\nu -2} ) }{{\rm Pr}(B_{\nu}) } = \frac{5/12 \cdot 4/7 }{3/7 } = {5}/{9} \hspace{0.15cm}\underline {\approx 0.556}.$$
Begründung:
- Die Wahrscheinlichkeit ${\rm Pr}(B_{\nu}\hspace{0.05cm}|\hspace{0.05cm}A_{\nu-2})= 5/12$ wurde bereits im Unterpunkt (3) berechnet.
- Aufgrund der Stationarität gilt ${\rm Pr}(A_{\nu-2})= {\rm Pr}(A) = 4/7$ und ${\rm Pr}(B_{\nu})= {\rm Pr}(B) = 3/7$.
- Damit erhält man für die gesuchte Rückschlusswahrscheinlichkeit nach obiger Gleichung den Wert 5/9.
(5) Entsprechend der Teilaufgabe (2) gilt mit ${p =1/2}$ für die Wahrscheinlichkeit von $A$ allgemein:
- $${\rm Pr}(A) = \frac{1-q}{1.5 -q}.$$
Aus $ {\rm Pr}(A) = 2/3$ folgt somit $\underline{q =0}$.
(6) Im Fall der statistischen Unabhängigkeit muss beispielsweise gelten:
- $${{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)} = {{\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}B)} = {{\rm Pr}(A)}.$$
Daraus folgt $p = {\rm Pr}(A) \hspace{0.15cm}\underline {= 2/3}$ und dementsprechend $q = 1-p \hspace{0.15cm}\underline {= 1/3}$.