Difference between revisions of "Aufgaben:Exercise 2.5: "Binomial" or "Poisson"?"
Line 42: | Line 42: | ||
− | {Die Werte der Poissonverteilung sind nicht auf den Bereich $0$, ... ,$5$ begrenzt. Wie groß sind die Wahrscheinlichkeiten, dass die poissonverteilte Größe gleich $6$ ist bzw. größer als $6$ ist? | + | {Die Werte der Poissonverteilung sind nicht auf den Bereich $0$, ... , $5$ begrenzt. <br>Wie groß sind die Wahrscheinlichkeiten, dass die poissonverteilte Größe exakt gleich $6$ ist bzw. größer als $6$ ist? |
|type="{}"} | |type="{}"} | ||
${\rm Pr}(z_{\rm Poisson} = 6) \ = \ $ { 0.012 3% } | ${\rm Pr}(z_{\rm Poisson} = 6) \ = \ $ { 0.012 3% } | ||
Line 63: | Line 63: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Bei der Poissonverteilung sind Mittelwert $m_1$ und Varianz $\sigma^2$ gleich. Die Zufallsgröße $z_1$ erfüllt diese Bedingung | + | '''(1)''' Richtig ist der <u>Lösungsvorschlag 1</u>: |
+ | *Bei der Poissonverteilung sind Mittelwert $m_1$ und Varianz $\sigma^2$ gleich. | ||
+ | *Die Zufallsgröße $z_1$ erfüllt diese Bedingung im Gegensatz zur Zufallsgröße $z_2$. | ||
+ | |||
'''(2)''' Bei der Poissonverteilung ist zudem der Mittelwert gleich der Rate. Deshalb muss $\underline{\lambda = 2}$ gelten. | '''(2)''' Bei der Poissonverteilung ist zudem der Mittelwert gleich der Rate. Deshalb muss $\underline{\lambda = 2}$ gelten. | ||
+ | |||
'''(3)''' Die entsprechende Wahrscheinlichkeit lautet mit $(z_{\rm Poisson} = z_1)$: | '''(3)''' Die entsprechende Wahrscheinlichkeit lautet mit $(z_{\rm Poisson} = z_1)$: | ||
− | $${\rm Pr}(z_1 = 6)=\frac{2^6}{6!}\cdot e^{-2}\hspace{0.15cm} \underline{\approx 0.012}$$ | + | :$${\rm Pr}(z_1 = 6)=\frac{2^6}{6!}\cdot e^{-2}\hspace{0.15cm} \underline{\approx 0.012}$$ |
− | $${\rm Pr}(z_1 > 6)=1 -{\rm Pr}(0) -{\rm Pr}(1) - ... - {\rm Pr}(6)\hspace{0.15cm} \underline{\approx 0.004}$$ | + | :$${\rm Pr}(z_1 > 6)=1 -{\rm Pr}(0) -{\rm Pr}(1) - \ \text{...} \ - {\rm Pr}(6)\hspace{0.15cm} \underline{\approx 0.004}.$$ |
+ | |||
'''(4)''' Für die Varianz der Binomialverteilung gilt: | '''(4)''' Für die Varianz der Binomialverteilung gilt: | ||
− | $$\sigma^{2}= I\cdot p\cdot (1- p)= m_{\rm 1}\cdot ( 1- p).$$ | + | :$$\sigma^{2}= I\cdot p\cdot (1- p)= m_{\rm 1}\cdot ( 1- p).$$ |
+ | |||
+ | Die charakteristische Wahrscheinlichkeit der Binomialverteilung ergibt sich aus der Varianz $\sigma^2 = 1.095$ und dem Mittelwert $m_1 = 2$ gemäß der Gleichung: | ||
+ | :$$ 1- p = \frac{\sigma^{2}}{m_1}= \frac{1.2}{2} = 0.6\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0.4}.$$ | ||
− | |||
− | |||
'''(5)''' Aus dem Mittelwert $m_1 = 2$ folgt weiterhin $\underline{I= 5}.$ Die Wahrscheinlichkeit für den Wert „0” müsste mit diesen Parametern wie folgt lauten: | '''(5)''' Aus dem Mittelwert $m_1 = 2$ folgt weiterhin $\underline{I= 5}.$ Die Wahrscheinlichkeit für den Wert „0” müsste mit diesen Parametern wie folgt lauten: | ||
− | $${\rm Pr}(z_2 = 0)=\left({5 \atop {0}}\right)\cdot p^{\rm 0}\cdot (1 - p)^{\rm 5-0}=0.6^5=0.078.$$ | + | :$${\rm Pr}(z_2 = 0)=\left({5 \atop {0}}\right)\cdot p^{\rm 0}\cdot (1 - p)^{\rm 5-0}=0.6^5=0.078.$$ |
− | Das bedeutet: <u>Das Ergebnis ist richtig</u>. | + | Das bedeutet: <u>Das Ergebnis ist richtig</u>. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Revision as of 14:25, 7 August 2018
Betrachtet werden zwei diskrete Zufallsgrößen $z_1$ und $z_2$, die (mindestens) alle ganzzahligen Werte zwischen $0$ und $5$ (einschließlich dieser Grenzen) annehmen können. Die Wahrscheinlichkeiten dieser Zufallsgrößen sind in nebenstehender Tabelle angegeben. Eine der beiden Zufallsgrößen ist allerdings nicht auf den angegebenen Wertebereich begrenzt.
Weiterhin ist bekannt, dass
- eine der Größen binomialverteilt ist, und
- die andere eine Poissonverteilung beschreibt.
Nicht bekannt ist allerdings, welche der beiden Zufallsgrößen $z_1$ und $z_2$ binomialverteilt und welche poissonverteilt ist.
Hinweise:
- Die Aufgabe gehört zum Kapitel Poissonverteilung.
- Bezug genommen wird aber auch auf das vorherige Kapitel Binomialverteilung.
Fragebogen
Musterlösung
- Bei der Poissonverteilung sind Mittelwert $m_1$ und Varianz $\sigma^2$ gleich.
- Die Zufallsgröße $z_1$ erfüllt diese Bedingung im Gegensatz zur Zufallsgröße $z_2$.
(2) Bei der Poissonverteilung ist zudem der Mittelwert gleich der Rate. Deshalb muss $\underline{\lambda = 2}$ gelten.
(3) Die entsprechende Wahrscheinlichkeit lautet mit $(z_{\rm Poisson} = z_1)$:
- $${\rm Pr}(z_1 = 6)=\frac{2^6}{6!}\cdot e^{-2}\hspace{0.15cm} \underline{\approx 0.012}$$
- $${\rm Pr}(z_1 > 6)=1 -{\rm Pr}(0) -{\rm Pr}(1) - \ \text{...} \ - {\rm Pr}(6)\hspace{0.15cm} \underline{\approx 0.004}.$$
(4) Für die Varianz der Binomialverteilung gilt:
- $$\sigma^{2}= I\cdot p\cdot (1- p)= m_{\rm 1}\cdot ( 1- p).$$
Die charakteristische Wahrscheinlichkeit der Binomialverteilung ergibt sich aus der Varianz $\sigma^2 = 1.095$ und dem Mittelwert $m_1 = 2$ gemäß der Gleichung:
- $$ 1- p = \frac{\sigma^{2}}{m_1}= \frac{1.2}{2} = 0.6\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0.4}.$$
(5) Aus dem Mittelwert $m_1 = 2$ folgt weiterhin $\underline{I= 5}.$ Die Wahrscheinlichkeit für den Wert „0” müsste mit diesen Parametern wie folgt lauten:
- $${\rm Pr}(z_2 = 0)=\left({5 \atop {0}}\right)\cdot p^{\rm 0}\cdot (1 - p)^{\rm 5-0}=0.6^5=0.078.$$
Das bedeutet: Das Ergebnis ist richtig.