Difference between revisions of "Aufgaben:Exercise 2.7: C Programs "z1" and "z2""
Line 6: | Line 6: | ||
Die beiden hier angegebenen C-Programme eignen sich zur Erzeugung diskreter Zufallsgrößen: | Die beiden hier angegebenen C-Programme eignen sich zur Erzeugung diskreter Zufallsgrößen: | ||
− | * Die Funktion $z1$ erzeugt eine $M$–-stufige Zufallsgröße mit dem Wertevorrat $\{0, 1$, ... , $M-1\}$, die dazugehörigen Wahrscheinlichkeiten werden im Array $\text{p_array}$ mit der Eigenschaft „Float” übergeben. Die Funktion $\text{random | + | * Die Funktion $z1$ erzeugt eine $M$–-stufige Zufallsgröße mit dem Wertevorrat $\{0, 1$, ... , $M-1\}$, die dazugehörigen Wahrscheinlichkeiten werden im Array $\text{p_array}$ mit der Eigenschaft „Float” übergeben. Die Funktion $\text{random()}$ liefert gleichverteilte Float–Zufallsgrößen zwischen $0$ und $1$. |
*Eine zweite Funktion $z2$ (Quelltext siehe unten) liefert eine spezielle Wahrscheinlichkeitsverteilung, die durch die beiden Parameter $I$ und $p$ festgelegt ist. Dieses geschieht unter Verwendung der Funktion <i>z</i>1. | *Eine zweite Funktion $z2$ (Quelltext siehe unten) liefert eine spezielle Wahrscheinlichkeitsverteilung, die durch die beiden Parameter $I$ und $p$ festgelegt ist. Dieses geschieht unter Verwendung der Funktion <i>z</i>1. | ||
Line 23: | Line 23: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Es gelte $M=4$ und $ | + | {Es gelte $M=4$ und $\text{p_array} = \big[0.2, \ 0.3, \ 0.4, \ 0.1 \big]$. |
<br>Welches Ergebnis liefert die Funktion $z1$, wenn die Randomfunktion den Wert $x = 0.75$ zurückgibt? | <br>Welches Ergebnis liefert die Funktion $z1$, wenn die Randomfunktion den Wert $x = 0.75$ zurückgibt? | ||
|type="{}"} | |type="{}"} |
Revision as of 16:35, 7 August 2018
Die beiden hier angegebenen C-Programme eignen sich zur Erzeugung diskreter Zufallsgrößen:
- Die Funktion $z1$ erzeugt eine $M$–-stufige Zufallsgröße mit dem Wertevorrat $\{0, 1$, ... , $M-1\}$, die dazugehörigen Wahrscheinlichkeiten werden im Array $\text{p_array}$ mit der Eigenschaft „Float” übergeben. Die Funktion $\text{random()}$ liefert gleichverteilte Float–Zufallsgrößen zwischen $0$ und $1$.
- Eine zweite Funktion $z2$ (Quelltext siehe unten) liefert eine spezielle Wahrscheinlichkeitsverteilung, die durch die beiden Parameter $I$ und $p$ festgelegt ist. Dieses geschieht unter Verwendung der Funktion z1.
Hinweise:
- Die Aufgabe gehört zum Kapitel Erzeugung von diskreten Zufallsgrößen.
- Insbesondere wird auf die Seite Erzeugung mehrstufiger Zufallsgrößen Bezug genommen.
Fragebogen
Musterlösung
(2) Richtig sind die Vorschläge 2 und 3:
- Würde man auf die Hilfsvariable $x$ verzichten und in Zeile 8 „summe > random()” schreiben, so würde bei jedem Schleifendurchgang ein neuer Zufallswert erzeugt und $z1$ hätte dann nicht die gewünschten Eigenschaften.
- $z1$ arbeitet gemäß dem Schaubild auf der Seite „Erzeugung mehrstufiger Zufallsgrößen“ im Theorieteil. Dort findet man eine deutlich schnellere Implementierung für den Fall gleicher Wahrscheinlichkeiten ($1/M$).
- Im ersten Durchlauf ($m = 0$) ist in diesem Fall die Rücksprungbedingung aufgrund der Kleiner/Gleich-Abfrage nicht erfüllt; der Ausgabewert ist tatsächlich $z1 = 1$.
(3) Richtig sind die Lösungsvorschläge 1, 3 und 4:
- Es ergibt sich eine binomialverteilte Zufallsgröße, und zwar mit Wertevorrat $\{0, 1, 2, 3, 4\}$.
- Für die Berechnung der Wahrscheinlichkeit ${\rm Pr}(z2 = 0) = (1 -p)^{I}$ benötigt man hier die mathematische Bibliothek.
- Das Potenzieren könnte aber auch durch $I$–fache Multiplikation realisiert werden.
(4) Aufgrund der Zeile 6 beinhaltet das Feldelement $p\_array[0]$ vor der Programmschleife ($i = 0$) den Wert $(1 -p)^{I}$. Im ersten Schleifendurchlauf ($i = 1$) wird folgender Wert eingetragen:
$${p\_array[1]}=\frac{ p\cdot I}{ 1- p}\cdot{p\_array[0]}= I\cdot p\cdot(1- p)^{ I- 1}={\rm Pr}(z2= 1) .$$
Im zweiten Schleifendurchlauf ($i = 2$) wird die Wahrscheinlichkeit für das Ergebnis „2” berechnet: $${p\_array[2]}=\frac{p\cdot (I- 1)}{ 2\cdot ( 1- p)}\cdot{ p\_array[1]}= \left({ I \atop { 2}}\right)\cdot p^{\rm 2}\cdot( 1- p)^{\rm 2}={\rm Pr}( z = 2) .$$
Für $I= 4$ und $p = 0.25$ erhält man folgenden Zahlenwert („4 über 2” ergibt 6): $${p\_array[2]}={\rm Pr}( z 2=2)=6\cdot\frac{1}{16}\cdot\frac{9}{16} \hspace{0.15cm}\underline{=0.211}.$$