Difference between revisions of "Aufgaben:Exercise 4.4: Two-dimensional Gaussian PDF"

From LNTwww
Line 75: Line 75:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; <u>Beide Aussagen treffen zu</u>:  
 
'''(1)'''&nbsp; <u>Beide Aussagen treffen zu</u>:  
*Vergleicht man die gegebene mit der allgemeing&uuml;ltigen 2D-WDF
+
*Vergleicht man die gegebene 2D-WDF mit der allgemeing&uuml;ltigen 2D-WDF
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v\sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2})}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )],$$
+
:$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
  
 
:so erkennt man, dass im Exponenten kein Term mit $u \cdot v$ auftritt, was nur bei $\rho_{uv} = 0$ m&ouml;glich ist.  
 
:so erkennt man, dass im Exponenten kein Term mit $u \cdot v$ auftritt, was nur bei $\rho_{uv} = 0$ m&ouml;glich ist.  
 
*Dies bedeutet aber, dass $u$ und $v$ unkorreliert sind.  
 
*Dies bedeutet aber, dass $u$ und $v$ unkorreliert sind.  
 
*Bei Gau&szlig;schen Zufallsgr&ouml;&szlig;en folgt aus der Unkorreliertheit aber auch stets die statistische Unabh&auml;ngigkeit.
 
*Bei Gau&szlig;schen Zufallsgr&ouml;&szlig;en folgt aus der Unkorreliertheit aber auch stets die statistische Unabh&auml;ngigkeit.
 +
  
  
Line 90: Line 91:
  
  
 +
[[File:P_ID265__Sto_A_4_4_d.png|right|frame|Wahrscheinlichkeit: $\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$]]
 
'''(3)'''&nbsp; Da $u$ eine kontinuierliche Zufallsgr&ouml;&szlig;e ist, gilt:
 
'''(3)'''&nbsp; Da $u$ eine kontinuierliche Zufallsgr&ouml;&szlig;e ist, gilt:
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u(\rm 1). $$
+
:$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$
  
 
Mit dem  Mittelwert $m_u = 0$ und der  Streuung $\sigma_u = 0.5$ erhält man:
 
Mit dem  Mittelwert $m_u = 0$ und der  Streuung $\sigma_u = 0.5$ erhält man:
 
:$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
 
:$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$
  
[[File:P_ID265__Sto_A_4_4_d.png|right|2D-Gebietswahrscheinlichkeit ]]
+
 
 
'''(4)'''&nbsp; Aufgrund der statistischen Unabh&auml;ngigkeit zwischen $u$ und $v$ gilt:
 
'''(4)'''&nbsp; Aufgrund der statistischen Unabh&auml;ngigkeit zwischen $u$ und $v$ gilt:
:$$\rm Pr[(\it u < \rm 1) \cap (\it v > \rm 1)] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
+
:$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  
Die Wahrscheinlichkeit ${\rm Pr}(u < 1) =0.9772$ wurde bereits  berechnet. F&uuml;r die zweite Wahrscheinlichkeit ${\rm Pr}(v > 1)$ gilt aus Symmetriegr&uuml;nden:
+
*Die Wahrscheinlichkeit ${\rm Pr}(u < 1) =0.9772$ wurde bereits  berechnet.  
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm -1) = \it F_v(\rm -1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
+
*F&uuml;r die zweite Wahrscheinlichkeit ${\rm Pr}(v > 1)$ gilt aus Symmetriegr&uuml;nden:
:$$\Rightarrow \rm Pr((\it u < \rm 1) \cap (\it v > \rm 1)) = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
+
:$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
 +
:$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$
  
Die Skizze verdeutlicht die vorgegebene Konstellation. Die H&ouml;henlinien der WDF (blau) sind wegen $\sigma_v > \sigma_u$ in vertikaler Richtung gestreckte Ellipsen. Rot schraffiert eingezeichnet ist das Gebiet, dessen Wahrscheinlichkeit in dieser Teilaufgabe berechnet werden sollte.
+
Die Skizze verdeutlicht die vorgegebene Konstellation:
 +
*Die H&ouml;henlinien der WDF (blau) sind wegen $\sigma_v > \sigma_u$ in vertikaler Richtung gestreckte Ellipsen.  
 +
*Rot schraffiert eingezeichnet ist das Gebiet, dessen Wahrscheinlichkeit in dieser Teilaufgabe berechnet werden sollte.
  
[[File:P_ID266__Sto_A_4_4_e.png|right|2D-Diracwand]]
+
 
 +
[[File:P_ID266__Sto_A_4_4_e.png|right|frame|2D-Diracwand auf der Korrelationsgeraden]]
 
'''(5)'''&nbsp; Richtig sind <u>der erste und der dritte Lösungsvorschlag</u>:
 
'''(5)'''&nbsp; Richtig sind <u>der erste und der dritte Lösungsvorschlag</u>:
*Wegen $\rho_{xy} = 1$ besteht ein deterministischer Zusammenhang zwischen $x$ und $y$ &nbsp; &#8658; &nbsp; alle Werte liegen auf der Geraden $y =K(x) \cdot; x$. Aufgrund der Streuungen $\sigma_x = 0.5$ und $\sigma_y = 1$ gilt $K = 2$.
+
*Wegen $\rho_{xy} = 1$ besteht ein deterministischer Zusammenhang zwischen $x$ und $y$  
*Auf dieser Geraden $y = 2x$ sind alle WDF-Werte unendlich gro&szlig;. Das bedeutet: Die 2D-WDF ist hier eine &bdquo;Diracwand&rdquo;.
+
:&#8658; &nbsp; Alle Werte liegen auf der Geraden $y =K(x) \cdot x$.  
*Wie aus der Skizze hervorgeht, sind die WDF&ndash;Werte auf der Geraden$y = 2x$, die gleichzeitig die Korrelationsgerade darstellt, gau&szlig;verteilt.  
+
*Aufgrund der Streuungen $\sigma_x = 0.5$ und $\sigma_y = 1$ gilt $K = 2$.
*Auch die beiden Randwahrscheinlichkeitsdichten sind Gau&szlig;funktionen, jeweils mit Mittelwert $0$. Wegen $\sigma_x = \sigma_u$ und $\sigma_y = \sigma_v$ gilt auch:
+
*Auf dieser Geraden $y = 2x$ sind alle WDF-Werte unendlich gro&szlig;.  
 +
*Das bedeutet: &nbsp; Die 2D-WDF ist hier eine &bdquo;Diracwand&rdquo;.
 +
*Wie aus der Skizze hervorgeht, sind die WDF&ndash;Werte auf der Geraden $y = 2x$ gau&szlig;verteilt.
 +
*Die Gerade $y = 2x$ stellt gleichzeitig die Korrelationsgerade dar. 
 +
*Auch die beiden Randwahrscheinlichkeitsdichten sind Gau&szlig;funktionen, jeweils mit Mittelwert $0$.  
 +
*Wegen $\sigma_x = \sigma_u$ und $\sigma_y = \sigma_v$ gilt auch:
 
:$$f_x(x) = f_u(u),  \hspace{0.5cm}f_y(y) = f_v(v).$$
 
:$$f_x(x) = f_u(u),  \hspace{0.5cm}f_y(y) = f_v(v).$$
  
[[File:P_ID274__Sto_A_4_4_g.png|right|Wahrscheinlichkeitsberechnung bei Diracwand]]
+
 
'''(6)'''&nbsp; Da die WDF der Zufallsgr&ouml;&szlig;e $x$ identisch mit der WDF $f_u(u)$ ist, ergibt sich auch genau die gleiche Wahrscheinlichkeit wie in der Teilaufgabe (3) berechnet:
+
[[File:P_ID274__Sto_A_4_4_g.png|right|frame|Wahrscheinlichkeitsberechnung für die Diracwand]]
 +
'''(6)'''&nbsp; Da die WDF der Zufallsgr&ouml;&szlig;e $x$ identisch mit der WDF $f_u(u)$ ist, ergibt sich auch genau die gleiche Wahrscheinlichkeit wie in der Teilaufgabe '''(3)''' berechnet:
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
 
:$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$
 +
  
 
'''(7)'''&nbsp; Das Zufallsereignis $y > 1$ ist identisch mit dem Ereignis $x > 0.5$. Damit ist die gesuchte Wahrscheinlichkeit gleich
 
'''(7)'''&nbsp; Das Zufallsereignis $y > 1$ ist identisch mit dem Ereignis $x > 0.5$. Damit ist die gesuchte Wahrscheinlichkeit gleich
:$$\rm Pr[(\it x > \rm 0.5) \cap (\it x < \rm 1)] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
+
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \it F_x \rm( 1) - \it F_x\rm (0.5).  $$
  
 
Mit der Streuung $\sigma_x = 0.5$ folgt weiter:
 
Mit der Streuung $\sigma_x = 0.5$ folgt weiter:
:$$\rm Pr[(\it x > \rm 0.5) \cap (\it x < \rm 1)] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
+
:$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 08:55, 16 August 2018

Tabelle: Gaußsche Fehlerfunktionen

Wir betrachten zweidimensionale Zufallsgrößen, wobei beide Komponenten stets als mittelwertfrei vorausgesetzt werden.

  • Die 2D-WDF der Zufallsgröße $(u, v)$ lautet:
$$f_{uv}(u, v)={1}/{\pi} \cdot {\rm e}^{-(2u^{\rm 2} \hspace{0.05cm}+ \hspace{0.05cm}v^{\rm 2}\hspace{-0.05cm}/\rm 2)}.$$
  • Von der ebenfalls Gaußschen 2D-Zufallsgröße $(x, y)$ sind die folgenden Parameter bekannt:
$$\sigma_x= 0.5, \hspace{0.5cm}\sigma_y = 1,\hspace{0.5cm}\rho_{xy} = 1. $$

Die Werte des Gaußschen Fehlerintegrals ${\rm \phi}(x)$ sowie der Komplementärfunktion ${\rm Q}(x) = 1- {\rm \phi}(x)$ können Sie der nebenstehenden Tabelle entnehmen.



Hinweise:

Teil 1:   Gaußsche Zufallsgrößen ohne statistische Bindungen,
Teil 2:   Gaußsche Zufallsgrößen mit statistischen Bindungen.



Fragebogen

1

Welche der Aussagen gelten hinsichtlich der 2D-Zufallsgröße $(u, v)$?

Die Zufallsgrößen $u$ und $v$ sind unkorreliert.
Die Zufallsgrößen $u$ und $v$ sind statistisch unabhängig.

2

Berechnen Sie die beiden Streuungen $\sigma_u$ und $\sigma_v$. Geben Sie zur Kontrolle den Quotienten der beiden Streuungen ein.

$\sigma_u/\sigma_v \ = \ $

3

Berechnen Sie die Wahrscheinlichkeit, dass $u$ kleiner als $1$ ist.

${\rm Pr}(u < 1)\ = \ $

4

Berechnen Sie die Wahrscheinlichkeit, dass die Zufallsgröße $u$ kleiner als $1$ und gleichzeitig die Zufallsgröße $v$ größer als $1$ ist.

${\rm Pr}\big[(u < 1) ∩ (υ > 1)\big]\ = \ $

5

Welche der Aussagen sind für die 2D–Zufallsgröße $(x, y)$ zutreffend?

Die 2D-WDF $f_{xy}(x, y)$ ist außerhalb der Geraden $y = 2x$ stets $0$.
Für alle Wertepaare auf der Geraden $y = 2x$ gilt $f_{xy}(x, y)= 0.5$.
Bezüglich der Rand-WDF gilt $f_{x}(x) = f_{u}(u)$ sowie $f_{y}(y) = f_{v}(v)$.

6

Berechnen Sie die Wahrscheinlichkeit, dass $x$ kleiner als $1$ ist.

${\rm Pr}(x < 1)\ = \ $

7

Berechnen Sie nun die Wahrscheinlichkeit, dass die Zufallsgröße $x$ kleiner als $1$ und gleichzeitig die Zufallsgröße $y$ größer als $1$ ist.

${\rm Pr}\big[(x < 1) ∩ (y > 1)\big]\ = \ $


Musterlösung

(1)  Beide Aussagen treffen zu:

  • Vergleicht man die gegebene 2D-WDF mit der allgemeingültigen 2D-WDF
$$f_{uv}(u,v) = \frac{\rm 1}{{\rm 2}\it\pi \cdot \sigma_u \cdot \sigma_v \cdot \sqrt{{\rm 1}-\it \rho_{\it uv}^{\rm 2}}} \cdot \rm exp\left[\frac{\rm 1}{2\cdot (\rm 1-\it \rho_{uv}^{\rm 2}{\rm )}}(\frac{\it u^{\rm 2}}{\it\sigma_u^{\rm 2}} + \frac{\it v^{\rm 2}}{\it\sigma_v^{\rm 2}} - \rm 2\it\rho_{uv}\frac{\it u\cdot \it v}{\sigma_u\cdot \sigma_v}\rm )\right],$$
so erkennt man, dass im Exponenten kein Term mit $u \cdot v$ auftritt, was nur bei $\rho_{uv} = 0$ möglich ist.
  • Dies bedeutet aber, dass $u$ und $v$ unkorreliert sind.
  • Bei Gaußschen Zufallsgrößen folgt aus der Unkorreliertheit aber auch stets die statistische Unabhängigkeit.


(2)  Bei statistischer Unabhängigkeit gilt:

$$f_{uv}(u, v) = f_u(u)\cdot f_v(v), \hspace{0.5cm} f_u(u)=\frac{{\rm e}^{-{\it u^{\rm 2}}/{(2\sigma_u^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_u} , \hspace{0.5cm} \it f_v(v)=\frac{{\rm e}^{-{\it v^{\rm 2}}/{({\rm 2}\sigma_v^{\rm 2})}}}{\sqrt{\rm 2\pi}\cdot\sigma_v}.$$

Durch Koeffizientenvergleich erhält man $\sigma_u = 0.5$ und $\sigma_v = 1$. Der Quotient ist somit $\sigma_u/\sigma_v\hspace{0.15cm}\underline{=0.5}$.


Wahrscheinlichkeit: $\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big]$

(3)  Da $u$ eine kontinuierliche Zufallsgröße ist, gilt:

$$\rm Pr(\it u < \rm 1) = \rm Pr(\it u \le \rm 1) =\it F_u\rm (1). $$

Mit dem Mittelwert $m_u = 0$ und der Streuung $\sigma_u = 0.5$ erhält man:

$$\rm Pr(\it u < \rm 1) = \rm \phi({\rm 1}/{\it\sigma_u})= \rm \phi(\rm 2) \hspace{0.15cm}\underline{=\rm 0.9772}. $$


(4)  Aufgrund der statistischen Unabhängigkeit zwischen $u$ und $v$ gilt:

$$\rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm Pr(\it u < \rm 1)\cdot \rm Pr(\it v > \rm 1).$$
  • Die Wahrscheinlichkeit ${\rm Pr}(u < 1) =0.9772$ wurde bereits berechnet.
  • Für die zweite Wahrscheinlichkeit ${\rm Pr}(v > 1)$ gilt aus Symmetriegründen:
$$\rm Pr(\it v > \rm 1) = \rm Pr(\it v \le \rm (-1) = \it F_v\rm (-1) = \rm \phi(\frac{\rm -1}{\it\sigma_v}) = \rm Q(1) =0.1587$$
$$\Rightarrow \hspace{0.3cm} \rm Pr\big[(\it u < \rm 1) \cap (\it v > \rm 1)\big] = \rm 0.9772\cdot \rm 0.1587 \hspace{0.15cm}\underline{ = \rm 0.1551}.$$

Die Skizze verdeutlicht die vorgegebene Konstellation:

  • Die Höhenlinien der WDF (blau) sind wegen $\sigma_v > \sigma_u$ in vertikaler Richtung gestreckte Ellipsen.
  • Rot schraffiert eingezeichnet ist das Gebiet, dessen Wahrscheinlichkeit in dieser Teilaufgabe berechnet werden sollte.


2D-Diracwand auf der Korrelationsgeraden

(5)  Richtig sind der erste und der dritte Lösungsvorschlag:

  • Wegen $\rho_{xy} = 1$ besteht ein deterministischer Zusammenhang zwischen $x$ und $y$
⇒   Alle Werte liegen auf der Geraden $y =K(x) \cdot x$.
  • Aufgrund der Streuungen $\sigma_x = 0.5$ und $\sigma_y = 1$ gilt $K = 2$.
  • Auf dieser Geraden $y = 2x$ sind alle WDF-Werte unendlich groß.
  • Das bedeutet:   Die 2D-WDF ist hier eine „Diracwand”.
  • Wie aus der Skizze hervorgeht, sind die WDF–Werte auf der Geraden $y = 2x$ gaußverteilt.
  • Die Gerade $y = 2x$ stellt gleichzeitig die Korrelationsgerade dar.
  • Auch die beiden Randwahrscheinlichkeitsdichten sind Gaußfunktionen, jeweils mit Mittelwert $0$.
  • Wegen $\sigma_x = \sigma_u$ und $\sigma_y = \sigma_v$ gilt auch:
$$f_x(x) = f_u(u), \hspace{0.5cm}f_y(y) = f_v(v).$$


Wahrscheinlichkeitsberechnung für die Diracwand

(6)  Da die WDF der Zufallsgröße $x$ identisch mit der WDF $f_u(u)$ ist, ergibt sich auch genau die gleiche Wahrscheinlichkeit wie in der Teilaufgabe (3) berechnet:

$$\rm Pr(\it x < \rm 1) \hspace{0.15cm}\underline{ = \rm 0.9772}.$$


(7)  Das Zufallsereignis $y > 1$ ist identisch mit dem Ereignis $x > 0.5$. Damit ist die gesuchte Wahrscheinlichkeit gleich

$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \it F_x \rm( 1) - \it F_x\rm (0.5). $$

Mit der Streuung $\sigma_x = 0.5$ folgt weiter:

$$\rm Pr \big[(\it x > \rm 0.5) \cap (\it x < \rm 1)\big] = \rm \phi(\rm 2) - \phi(1)=\rm 0.9772- \rm 0.8413\hspace{0.15cm}\underline{=\rm 0.1359}.$$