Difference between revisions of "Aufgaben:Exercise 4.09: Cyclo-Ergodicity"

From LNTwww
Line 23: Line 23:
  
  
''Hinweise:''  
+
''Hinweis:''  
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
   
 
   
Line 59: Line 59:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 3 und 4</u>:
 
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 3 und 4</u>:
*Zum Zeitpunkt $t = 0$ (und allen Vielfachen der Periodendauer $T_0$) hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert beträgt $1.5\hspace{0.05cm}\rm V$).  
+
*Zum Zeitpunkt $t = 0$ (und allen Vielfachen der Periodendauer $T_0$) hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert beträgt $1.5\hspace{0.05cm}\rm V$.  
*Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch $0$. Das hei&szlig;t: Bereits der lineare Mittelwert erf&uuml;llt die Bedingung der Stationarit&auml;t nicht; der Prozess $\{x_i(t)\}$ ist nicht station&auml;r und kann deshalb auch nicht ergodisch sein.
+
*Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch $0$. Das hei&szlig;t:  
 +
*Bereits der lineare Mittelwert erf&uuml;llt die Bedingung der Stationarit&auml;t nicht; der Prozess $\{x_i(t)\}$ ist nicht station&auml;r und kann deshalb auch nicht ergodisch sein.
 
*Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten &nbsp; &rArr; &nbsp; der Prozess ist station&auml;r.  
 
*Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten &nbsp; &rArr; &nbsp; der Prozess ist station&auml;r.  
*Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend f&uuml;r den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizit&auml;t ausgegangen werden. Am Ende der Aufgabe ist zu &uuml;berpr&uuml;fen, ob diese Annahme gerechtfertigt ist.  
+
*Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend f&uuml;r den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizit&auml;t ausgegangen werden.  
 +
*Am Ende der Aufgabe ist zu &uuml;berpr&uuml;fen, ob diese Annahme gerechtfertigt ist.  
  
  
'''(2)'''&nbsp; Aufgrund der Ergodizit&auml;t kann jede Musterfunktion zur AKF-Berechung herangezogen werden. Wir benutzen hier willk&uuml;rlich die Phase $\varphi_i = 0$. Aufgrund der Periodizit&auml;t gen&uuml;gt die Mitteilung &uuml;ber nur eine Periodendauer $T_0$. Dann gilt:
+
 
 +
'''(2)'''&nbsp; Aufgrund der Ergodizit&auml;t kann jede Musterfunktion zur AKF&ndash;Berechung herangezogen werden. Wir benutzen hier willk&uuml;rlich die Phase $\varphi_i = 0$.  
 +
*Aufgrund der Periodizit&auml;t gen&uuml;gt die Mitteilung &uuml;ber nur eine Periodendauer $T_0$. Dann gilt:
 
:$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)})  \hspace{0.1cm}\rm d \it t.$$
 
:$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)})  \hspace{0.1cm}\rm d \it t.$$
  
Mit der trigonometrischen Beziehung
+
*Mit der trigonometrischen Beziehung &nbsp; $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$ &nbsp; folgt daraus weiter:
:$$\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$$
 
 
 
folgt daraus weiter:
 
 
:$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t + \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t. $$
 
:$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t + \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )}  \hspace{0.1cm}\rm d \it t. $$
  
Das erste Integral ist $0$ (Integration &uuml;ber zwei Perioden der Cosinusfunktion), der zweite Integrand ist unabh&auml;ngig von der Integrationsvariablen $t$. Daraus folgt: $\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $ F&uuml;r die angegebenen Zeitpunkte gilt mit $x_0 = 2\hspace{0.05cm}\rm V$:
+
*Das erste Integral ist Null (Integration &uuml;ber zwei Perioden der Cosinusfunktion).
 +
*Der zweite Integrand ist unabh&auml;ngig von der Integrationsvariablen $t$. Daraus folgt: &nbsp; $\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $  
 +
*F&uuml;r die angegebenen Zeitpunkte gilt mit $x_0 = 2\hspace{0.05cm}\rm V$:
 
:$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm}  \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$
 
:$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm}  \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$
  
Line 80: Line 83:
 
'''(3)'''&nbsp; Richtig ist nur <u>der erste Lösungsvorschlag</u>:
 
'''(3)'''&nbsp; Richtig ist nur <u>der erste Lösungsvorschlag</u>:
 
*Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF f&uuml;r $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschlie&szlig;t. Daraus folgt $m_y= 0$.
 
*Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF f&uuml;r $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschlie&szlig;t. Daraus folgt $m_y= 0$.
*Die Varianz (Leistung) ist gleich dem AKF-Wert an der Stelle $\tau = 0$, also $2\hspace{0.05cm}\rm V^2$. Der Effektivwert ist die Quadratwurzel daraus: $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
+
*Die Varianz (Leistung) ist gleich dem AKF&ndash;Wert an der Stelle $\tau = 0$, also $2\hspace{0.05cm}\rm V^2$. Der Effektivwert ist die Quadratwurzel daraus: &nbsp; $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
 
*Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das hei&szlig;t, auch die Periodendauer der AKF betr&auml;gt $T_0$.  
 
*Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das hei&szlig;t, auch die Periodendauer der AKF betr&auml;gt $T_0$.  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 13:35, 18 August 2018

Zur Verdeutlichung von „Zykloergodizität”

Wir betrachten zwei unterschiedliche Zufallsprozesse, deren Musterfunktionen harmonische Schwingungen mit jeweils gleicher Frequenz $f_0 = 1/T_0$ sind. $T_0$ bezeichnet die Periodendauer.

  • Beim oben dargestellten Zufallsprozess $\{x_i(t)\}$ ist die Amplitude die stochastische Komponente, wobei der Zufallsparameter $C_i$ alle Werte zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$ mit gleicher Wahrscheinlichkeit annehmen kann:
$$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$
  • Beim Prozess $\{y_i(t)\}$ weisen alle Musterfunktionen die gleiche Amplitude auf:   $x_0 = 2\hspace{0.05cm}\rm V$. Hier variiert die Phase $\varphi_i$, die gleichverteilt zwischen $0$ und $2\pi$ ist:
$$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$

Die Eigenschaften zyklostationär und zykloergodisch sagen aus,

  • dass die Prozesse zwar im strengen Sinne nicht als stationär und ergodisch zu bezeichnen sind,
  • die statistischen Kennwerte aber für Vielfache der Periondauer $T_0$ jeweils gleich sind.


In diesen Fällen sind auch die meisten der Berechnungsregeln anwendbar, die eigentlich nur für ergodische Prozesse gelten.



Hinweis:


Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

Der Prozess $\{x_i(t)\}$ ist stationär.
Der Prozess $\{x_i(t)\}$ ist ergodisch.
Der Prozess $\{y_i(t)\}$ ist stationär.
Der Prozess $\{y_i(t)\}$ ist ergodisch.

2

Berechnen Sie die Autokorrelationsfunktion $\phi_y(\tau)$ für verschiedene $\tau$-Werte.

$\varphi_y(\tau=0)\ = \ $

$\ \rm V^2$
$\varphi_y(\tau=0.25 \cdot T_0)\ = \ $

$\ \rm V^2$
$\varphi_y(\tau=1.50 \cdot T_0)\ = \ $

$\ \rm V^2$

3

Welche der folgenden Aussagen sind bezüglich $\{y_i(t)\}$ zutreffend?

Alle Mustersignale sind gleichsignalfrei.
Alle Mustersignale besitzen einen Effektivwert von $2\hspace{0.05cm}\rm V$.
Die AKF hat die doppelte Periodendauer $(2T_0)$ wie die Mustersignale $(T_0)$.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 3 und 4:

  • Zum Zeitpunkt $t = 0$ (und allen Vielfachen der Periodendauer $T_0$) hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert beträgt $1.5\hspace{0.05cm}\rm V$.
  • Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch $0$. Das heißt:
  • Bereits der lineare Mittelwert erfüllt die Bedingung der Stationarität nicht; der Prozess $\{x_i(t)\}$ ist nicht stationär und kann deshalb auch nicht ergodisch sein.
  • Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten   ⇒   der Prozess ist stationär.
  • Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend für den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizität ausgegangen werden.
  • Am Ende der Aufgabe ist zu überprüfen, ob diese Annahme gerechtfertigt ist.


(2)  Aufgrund der Ergodizität kann jede Musterfunktion zur AKF–Berechung herangezogen werden. Wir benutzen hier willkürlich die Phase $\varphi_i = 0$.

  • Aufgrund der Periodizität genügt die Mitteilung über nur eine Periodendauer $T_0$. Dann gilt:
$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$
  • Mit der trigonometrischen Beziehung   $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$   folgt daraus weiter:
$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t + \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t. $$
  • Das erste Integral ist Null (Integration über zwei Perioden der Cosinusfunktion).
  • Der zweite Integrand ist unabhängig von der Integrationsvariablen $t$. Daraus folgt:   $\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $
  • Für die angegebenen Zeitpunkte gilt mit $x_0 = 2\hspace{0.05cm}\rm V$:
$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm} \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$


(3)  Richtig ist nur der erste Lösungsvorschlag:

  • Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF für $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschließt. Daraus folgt $m_y= 0$.
  • Die Varianz (Leistung) ist gleich dem AKF–Wert an der Stelle $\tau = 0$, also $2\hspace{0.05cm}\rm V^2$. Der Effektivwert ist die Quadratwurzel daraus:   $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
  • Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das heißt, auch die Periodendauer der AKF beträgt $T_0$.