Difference between revisions of "Aufgaben:Exercise 4.09: Cyclo-Ergodicity"
From LNTwww
Line 23: | Line 23: | ||
− | '' | + | ''Hinweis:'' |
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]]. | ||
Line 59: | Line 59: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''(1)''' Richtig sind <u>die Lösungsvorschläge 3 und 4</u>: | '''(1)''' Richtig sind <u>die Lösungsvorschläge 3 und 4</u>: | ||
− | *Zum Zeitpunkt $t = 0$ (und allen Vielfachen der Periodendauer $T_0$) hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert beträgt $1.5\hspace{0.05cm}\rm V$ | + | *Zum Zeitpunkt $t = 0$ (und allen Vielfachen der Periodendauer $T_0$) hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert beträgt $1.5\hspace{0.05cm}\rm V$. |
− | *Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch $0$. Das heißt: Bereits der lineare Mittelwert erfüllt die Bedingung der Stationarität nicht; der Prozess $\{x_i(t)\}$ ist nicht stationär und kann deshalb auch nicht ergodisch sein. | + | *Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch $0$. Das heißt: |
+ | *Bereits der lineare Mittelwert erfüllt die Bedingung der Stationarität nicht; der Prozess $\{x_i(t)\}$ ist nicht stationär und kann deshalb auch nicht ergodisch sein. | ||
*Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten ⇒ der Prozess ist stationär. | *Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten ⇒ der Prozess ist stationär. | ||
− | *Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend für den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizität ausgegangen werden. Am Ende der Aufgabe ist zu überprüfen, ob diese Annahme gerechtfertigt ist. | + | *Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend für den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizität ausgegangen werden. |
+ | *Am Ende der Aufgabe ist zu überprüfen, ob diese Annahme gerechtfertigt ist. | ||
− | '''(2)''' Aufgrund der Ergodizität kann jede Musterfunktion zur AKF | + | |
+ | '''(2)''' Aufgrund der Ergodizität kann jede Musterfunktion zur AKF–Berechung herangezogen werden. Wir benutzen hier willkürlich die Phase $\varphi_i = 0$. | ||
+ | *Aufgrund der Periodizität genügt die Mitteilung über nur eine Periodendauer $T_0$. Dann gilt: | ||
:$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$ | :$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$ | ||
− | Mit der trigonometrischen Beziehung | + | *Mit der trigonometrischen Beziehung $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$ folgt daraus weiter: |
− | |||
− | |||
− | folgt daraus weiter: | ||
:$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t + \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t. $$ | :$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t + \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t. $$ | ||
− | Das erste Integral ist | + | *Das erste Integral ist Null (Integration über zwei Perioden der Cosinusfunktion). |
+ | *Der zweite Integrand ist unabhängig von der Integrationsvariablen $t$. Daraus folgt: $\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $ | ||
+ | *Für die angegebenen Zeitpunkte gilt mit $x_0 = 2\hspace{0.05cm}\rm V$: | ||
:$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm} \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$ | :$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm} \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$ | ||
Line 80: | Line 83: | ||
'''(3)''' Richtig ist nur <u>der erste Lösungsvorschlag</u>: | '''(3)''' Richtig ist nur <u>der erste Lösungsvorschlag</u>: | ||
*Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF für $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschließt. Daraus folgt $m_y= 0$. | *Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF für $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschließt. Daraus folgt $m_y= 0$. | ||
− | *Die Varianz (Leistung) ist gleich dem AKF | + | *Die Varianz (Leistung) ist gleich dem AKF–Wert an der Stelle $\tau = 0$, also $2\hspace{0.05cm}\rm V^2$. Der Effektivwert ist die Quadratwurzel daraus: $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$. |
*Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das heißt, auch die Periodendauer der AKF beträgt $T_0$. | *Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das heißt, auch die Periodendauer der AKF beträgt $T_0$. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Revision as of 13:35, 18 August 2018
Wir betrachten zwei unterschiedliche Zufallsprozesse, deren Musterfunktionen harmonische Schwingungen mit jeweils gleicher Frequenz $f_0 = 1/T_0$ sind. $T_0$ bezeichnet die Periodendauer.
- Beim oben dargestellten Zufallsprozess $\{x_i(t)\}$ ist die Amplitude die stochastische Komponente, wobei der Zufallsparameter $C_i$ alle Werte zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$ mit gleicher Wahrscheinlichkeit annehmen kann:
- $$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$
- Beim Prozess $\{y_i(t)\}$ weisen alle Musterfunktionen die gleiche Amplitude auf: $x_0 = 2\hspace{0.05cm}\rm V$. Hier variiert die Phase $\varphi_i$, die gleichverteilt zwischen $0$ und $2\pi$ ist:
- $$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$
Die Eigenschaften zyklostationär und zykloergodisch sagen aus,
- dass die Prozesse zwar im strengen Sinne nicht als stationär und ergodisch zu bezeichnen sind,
- die statistischen Kennwerte aber für Vielfache der Periondauer $T_0$ jeweils gleich sind.
In diesen Fällen sind auch die meisten der Berechnungsregeln anwendbar, die eigentlich nur für ergodische Prozesse gelten.
Hinweis:
- Die Aufgabe gehört zum Kapitel Autokorrelationsfunktion.
Fragebogen
Musterlösung
(1) Richtig sind die Lösungsvorschläge 3 und 4:
- Zum Zeitpunkt $t = 0$ (und allen Vielfachen der Periodendauer $T_0$) hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert beträgt $1.5\hspace{0.05cm}\rm V$.
- Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch $0$. Das heißt:
- Bereits der lineare Mittelwert erfüllt die Bedingung der Stationarität nicht; der Prozess $\{x_i(t)\}$ ist nicht stationär und kann deshalb auch nicht ergodisch sein.
- Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten ⇒ der Prozess ist stationär.
- Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend für den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizität ausgegangen werden.
- Am Ende der Aufgabe ist zu überprüfen, ob diese Annahme gerechtfertigt ist.
(2) Aufgrund der Ergodizität kann jede Musterfunktion zur AKF–Berechung herangezogen werden. Wir benutzen hier willkürlich die Phase $\varphi_i = 0$.
- Aufgrund der Periodizität genügt die Mitteilung über nur eine Periodendauer $T_0$. Dann gilt:
- $$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$
- Mit der trigonometrischen Beziehung $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$ folgt daraus weiter:
- $$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t + \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t. $$
- Das erste Integral ist Null (Integration über zwei Perioden der Cosinusfunktion).
- Der zweite Integrand ist unabhängig von der Integrationsvariablen $t$. Daraus folgt: $\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $
- Für die angegebenen Zeitpunkte gilt mit $x_0 = 2\hspace{0.05cm}\rm V$:
- $$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm} \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$
(3) Richtig ist nur der erste Lösungsvorschlag:
- Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF für $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschließt. Daraus folgt $m_y= 0$.
- Die Varianz (Leistung) ist gleich dem AKF–Wert an der Stelle $\tau = 0$, also $2\hspace{0.05cm}\rm V^2$. Der Effektivwert ist die Quadratwurzel daraus: $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
- Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das heißt, auch die Periodendauer der AKF beträgt $T_0$.