Difference between revisions of "Aufgaben:Exercise 2.5Z: Compression Factor vs. Residual Redundancy"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID2449__Inf_Z_2_5_neu.png|right|LZW–Datenlänge <i>L</i>(<i>N</i>) für zwei Quellen ]]
+
[[File:P_ID2449__Inf_Z_2_5_neu.png|right|frame|Datenlänge $L(N)$ für zwei Quellen nach LZW&ndash;Codierung]]
 
Wir betrachten wie in der [[Aufgaben:2.5_Restredundanz_bei_LZW-Codierung|Aufgabe 2.5]] die Datenkomprimierung mit dem 1983 veröffentlichten [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Der_Lempel.E2.80.93Ziv.E2.80.93Welch.E2.80.93Algorithmus|Lempel&ndash;Ziv&ndash;Welch&ndash;Algorithmus]]. Dabei gilt:
 
Wir betrachten wie in der [[Aufgaben:2.5_Restredundanz_bei_LZW-Codierung|Aufgabe 2.5]] die Datenkomprimierung mit dem 1983 veröffentlichten [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Der_Lempel.E2.80.93Ziv.E2.80.93Welch.E2.80.93Algorithmus|Lempel&ndash;Ziv&ndash;Welch&ndash;Algorithmus]]. Dabei gilt:
* Die Eingangsfolge habe die Länge <i>N</i>.
+
* Die Eingangsfolge habe die Länge $N$.
* Die Länge der LZW&ndash;Coderausgabe ist <i>L</i>.
+
* Die Länge der LZW&ndash;Coderausgabe ist $L$.
 +
 
 +
 
 +
Die Grafik zeigt für zwei verschiedene binäre Nachrichtenquellen $\rm BQ1$ und $\rm BQ2$ den Zusammenhang zwischen den Folgenlängen $N$ und $L$, dargestellt durch den Funktionsverlauf $L(N)$. Die beiden Nachrichtenquellen besitzen die gleichen statistischen Eigenschaften wie in der [[Aufgaben:Aufgabe_2.5:_Restredundanz_bei_LZW-Codierung|Aufgabe 2.5]]:
 +
* $\rm BQ1$ ist aufgrund von ungleichen Symbolwahrscheinlichkeiten $(p_{\rm A} = 0.89$ und $p_{\rm B} = 0.11)$ redundant. Es bestehen keine Bindungen zwischen den einzelnen Symbolen. Die Entropie ist $H = 0.5$ bit/Quellensymbol.
 +
* $\rm BQ2$  ist redundanzfrei und weist die Entropie $H = 1$ bit/Quellensymbol auf.
  
Die Grafik zeigt für zwei verschiedene binäre Nachrichtenquellen '''BQ1''' und '''BQ2''' den Zusammenhang zwischen den Folgenlängen <i>N</i> und <i>L</i>, dargestellt durch den Funktionsverlauf <i>L</i>(<i>N</i>). Die beiden Nachrichtenquellen besitzen die gleichen statistischen Eigenschaften wie in Aufgabe 2.5:
 
* '''BQ1''' ist aufgrund von ungleichen Symbolwahrscheinlichkeiten (<i>p</i><sub>A</sub> = 0.89, <i>p</i><sub>B</sub>&nbsp;=&nbsp;0.11) redundant. Es bestehen keine Bindungen zwischen den einzelnen Symbolen. Die Entropie ist <i>H</i> = 0.5 bit/Quellensymbol.
 
* '''BQ2'''  ist redundanzfrei und weist die Entropie <i>H</i> = 1 bit/Quellensymbol auf.
 
  
 
Weiter benötigen Sie für die Lösung dieser Aufagbe noch zwei Definitionen:
 
Weiter benötigen Sie für die Lösung dieser Aufagbe noch zwei Definitionen:
* Der <i>Komprimierungsfaktor</i> ist definitionsgemäß <i>K</i>(<i>N</i>) = <i>L</i>(<i>N</i>)/<i>N</i>.
+
* Der <i>Komprimierungsfaktor</i> ist definitionsgemäß  
 +
:$$K(N) = \frac{L(N)}{N}\hspace{0.05cm}.$$
 
* Die relative Redundanz der LZW&ndash;Coderfolge (im Folgenden <i>Restredundanz</i> genannt) ist
 
* Die relative Redundanz der LZW&ndash;Coderfolge (im Folgenden <i>Restredundanz</i> genannt) ist
 
:$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 -  \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$
 
:$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 -  \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$
 +
 +
 +
 +
  
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch|Komprimierung nach Lempel, Ziv und Welch]].
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch|Komprimierung nach Lempel, Ziv und Welch]].
*Insbesondere wird  Bezug genommen auf die Seiten [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Restredrundanz_als_Ma.C3.9F_f.C3.BCr_die_Effizienz_von_Codierverfahren|Restredrundanz als Maß für die Effizienz von Codierverfahren]], [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Effizienz_der_Lempel.E2.80.93Ziv.E2.80.93Codierung|Effizienz der Lempel-Ziv-Codierung]] sowie [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_Aussagen_zur_asymptotischen_Optimalit.C3.A4t|Quantitative Aussagen zur asymptotischen Optimalität]].
+
*Insbesondere wird  Bezug genommen auf die Seiten
 +
:: [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Restredundanz_als_Ma.C3.9F_f.C3.BCr_die_Effizienz_von_Codierverfahren|Restredrundanz als Maß für die Effizienz von Codierverfahren]],
 +
:: [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Effizienz_der_Lempel.E2.80.93Ziv.E2.80.93Codierung|Effizienz der Lempel-Ziv-Codierung]] sowie
 +
:: [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_Aussagen_zur_asymptotischen_Optimalit.C3.A4t|Quantitative Aussagen zur asymptotischen Optimalität]].
 
   
 
   
  
Line 27: Line 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Komprimierungfaktoren <i>K</i>(<i>N</i>) ergeben sich mit <i>N</i> = 10000?
+
{Welche Komprimierungfaktoren $K(N)$ ergeben sich mit $N = 10000$?
 
|type="{}"}
 
|type="{}"}
'''BQ1''': &nbsp; &nbsp; $K(N = 10000) \ = $ { 0.68 3% }
+
$\rm BQ1$: &nbsp; &nbsp; $K(N = 10000) \ = \ $ { 0.68 3% }
'''BQ2''': &nbsp; &nbsp; $K(N = 10000) \ = $ { 1.233 3% }
+
$\rm BQ2$: &nbsp; &nbsp; $K(N = 10000) \ = $ { 1.233 3% }
  
  
{Wie groß ist die Restredundanz  <i>r</i>(<i>N</i>) (in Prozent)? Es gelte wieder <i>N</i> = 10000.
+
{Wie groß ist die Restredundanz  $r(N)$ (in Prozent)? Es gelte wieder $N = 10000$.
 
|type="{}"}
 
|type="{}"}
'''BQ1''': &nbsp; &nbsp; $r(N = 10000) \ = $ { 26.5 3% } $\ \%$
+
$\rm BQ1$: &nbsp; &nbsp; $r(N = 10000) \ = $ { 26.5 3% } $\ \%$
'''BQ2''': &nbsp; &nbsp; $r(N = 10000) \ = $ { 19.0 3% } $\ \%$
+
$\rm BQ2$: &nbsp; &nbsp; $r(N = 10000) \ = $ { 19.0 3% } $\ \%$
  
  
{Welche Aussagen liefert der Vergleich von <i>N</i> = 10000 und <i>N</i> = 50000?
+
{Welche Aussagen liefert der Vergleich von $N = 10000$ und $N = 50000$?
 
|type="[]"}
 
|type="[]"}
+ Bei beiden Quellen ist <i>K</i>(<i>N</i> = 50000) kleiner als <i>K</i>(<i>N</i> = 10000).
+
+ Bei beiden Quellen ist $K(N = 50000)$ kleiner als $K(N = 10000)$.
+ Bei beiden Quellen ist <i>r</i>(<i>N</i> = 50000) kleiner als <i>r</i>(<i>N</i> = 10000).
+
+ Bei beiden Quellen ist $r(N = 50000)$ kleiner als $r(N = 10000)$.
- Nur bei '''BQ1''' ergeben sich mit <i>N</i> = 50000 günstigere Werte.
+
- Nur bei $\rm BQ1$ ergeben sich mit $N = 50000$ günstigere Werte.
  
  

Revision as of 09:52, 26 September 2018

Datenlänge $L(N)$ für zwei Quellen nach LZW–Codierung

Wir betrachten wie in der Aufgabe 2.5 die Datenkomprimierung mit dem 1983 veröffentlichten Lempel–Ziv–Welch–Algorithmus. Dabei gilt:

  • Die Eingangsfolge habe die Länge $N$.
  • Die Länge der LZW–Coderausgabe ist $L$.


Die Grafik zeigt für zwei verschiedene binäre Nachrichtenquellen $\rm BQ1$ und $\rm BQ2$ den Zusammenhang zwischen den Folgenlängen $N$ und $L$, dargestellt durch den Funktionsverlauf $L(N)$. Die beiden Nachrichtenquellen besitzen die gleichen statistischen Eigenschaften wie in der Aufgabe 2.5:

  • $\rm BQ1$ ist aufgrund von ungleichen Symbolwahrscheinlichkeiten $(p_{\rm A} = 0.89$ und $p_{\rm B} = 0.11)$ redundant. Es bestehen keine Bindungen zwischen den einzelnen Symbolen. Die Entropie ist $H = 0.5$ bit/Quellensymbol.
  • $\rm BQ2$ ist redundanzfrei und weist die Entropie $H = 1$ bit/Quellensymbol auf.


Weiter benötigen Sie für die Lösung dieser Aufagbe noch zwei Definitionen:

  • Der Komprimierungsfaktor ist definitionsgemäß
$$K(N) = \frac{L(N)}{N}\hspace{0.05cm}.$$
  • Die relative Redundanz der LZW–Coderfolge (im Folgenden Restredundanz genannt) ist
$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 - \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$




Hinweise:

Restredrundanz als Maß für die Effizienz von Codierverfahren,
Effizienz der Lempel-Ziv-Codierung sowie
Quantitative Aussagen zur asymptotischen Optimalität.


Fragebogen

1

Welche Komprimierungfaktoren $K(N)$ ergeben sich mit $N = 10000$?

$\rm BQ1$:     $K(N = 10000) \ = \ $

$\rm BQ2$:     $K(N = 10000) \ = \ $

2

Wie groß ist die Restredundanz $r(N)$ (in Prozent)? Es gelte wieder $N = 10000$.

$\rm BQ1$:     $r(N = 10000) \ = \ $

$\ \%$
$\rm BQ2$:     $r(N = 10000) \ = \ $

$\ \%$

3

Welche Aussagen liefert der Vergleich von $N = 10000$ und $N = 50000$?

Bei beiden Quellen ist $K(N = 50000)$ kleiner als $K(N = 10000)$.
Bei beiden Quellen ist $r(N = 50000)$ kleiner als $r(N = 10000)$.
Nur bei $\rm BQ1$ ergeben sich mit $N = 50000$ günstigere Werte.


Musterlösung

(1)  Der Komprimierungsfaktor ist definiert als der Quotient der Längen von LZW–Ausgangsfolge (L) und Eingangsfolge (N = 10000):

$${\rm BQ1:}\hspace{0.3cm} K \hspace{0.2cm} = \hspace{0.2cm} \frac{6800}{10000}\hspace{0.15cm}\underline{= 0.680}\hspace{0.05cm},$$
$$ {\rm BQ2:}\hspace{0.3cm} K \hspace{0.2cm} = \hspace{0.2cm} \frac{12330}{10000}\hspace{0.15cm}\underline{= 1.233}\hspace{0.05cm}. $$
  • Die LZW–Codierung macht natürlich nur bei der redundanten Binärquelle BQ1 Sinn. Hier kann die Datenmenge um 32% gesenkt werden.
  • Bei der redundanzfreien Binärquelle BQ2 führt dagegen die LZW–Codierung zu einer um 23.3% größeren Datenmenge.


(2)  Aus der angegebenen Gleichung erhält man mit N = 10000:

$${\rm BQ1:}\hspace{0.3cm} H = 0.5\hspace{0.05cm},\hspace{0.2cm} r(N=10000) \hspace{0.2cm} = \hspace{0.2cm}1 - \frac{0.5 \cdot N}{L } = 1 - \frac{5000}{6800 } \hspace{0.15cm}\underline{\approx 26.5\,\%}\hspace{0.05cm},$$
$$ {\rm BQ2:}\hspace{0.3cm} H = 1.0\hspace{0.05cm},\hspace{0.2cm} r(N=10000) \hspace{0.2cm} = \hspace{0.2cm}1 - \frac{N}{L } = 1 - \frac{10000}{12330 } \hspace{0.15cm}\underline{\approx 19\,\%}\hspace{0.05cm}.$$
  • Die Restredundanz gibt die (relative) Redundanz der LZWQ–Ausgangsfolge an.
  • Obwohl die Quelle BQ1 für die LZW–Codierung besser geeignet ist als die redundanzfreie Quelle BQ2, ergibt sich bei BQ1 wegen der Redundanz in der Eingangsfolge eine größere Restredundanz.
  • Eine kleinere Restredundanz r(N) bei gegebenem N sagt also nichts darüber aus, ob die LZW–Codierung für die vorliegende Quelle sinnvoll ist.
  • Hierzu muss der Komprimierungsfaktor K betrachtet werden. Allgemein gilt folgender Zusammenhang zwischen r(N) und K(N):
$$r(N) = 1 - \frac{H}{K(N)}\hspace{0.05cm},\hspace{0.2cm} K(N) = H \cdot (1- r(N)) \hspace{0.05cm}.$$

(3)  Aus der Tabelle auf der Angabenseite kann man ablesen (bzw. daraus ableiten)

  • für die redundante Binärquelle BQ1:
$$L(N = 50000) = 32100\hspace{0.05cm},\hspace{0.2cm} K(N = 50000) = 0.642\hspace{0.05cm},\hspace{0.2cm}r(N = 50000) \hspace{0.15cm}\underline {= 22.2\,\% \hspace{0.05cm}},$$
  • für die redundanzfreie Binärquelle BQ2:
$$L(N = 50000) = 59595\hspace{0.05cm},\hspace{0.2cm} K(N = 50000) = 1.192\hspace{0.05cm},\hspace{0.2cm}r(N = 50000) \hspace{0.15cm}\underline {= 16.1\,\% \hspace{0.05cm}}.$$

Richtig sind somit die Aussagen 1 und 2:

  • Für beide Quellen ist der Komprimierungsfaktor K(N) für N = 50000 kleiner als für N = 10000.
  • Gleiches gilt für die Resrredundanz: r(N = 50000) ist kleiner als r(N = 10000).
  • Sowohl hinsichtlich K(N) als auch hinsichtlich r(N) ergeben sich also bei größerem N „günstigere” Werte, auch dann, wenn eigentlich wie bei der redundanzfreien Binärquelle BQ2 die Anwendung von Lempel–Ziv zu einer Verschlechterung führt.