Difference between revisions of "Aufgaben:Exercise 4.2: Mismatched Line"

From LNTwww
Line 66: Line 66:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
 
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
*Der Wellenwiderstand  $Z_{\rm W}$ ist definiert als der Quotient von Spannung und Strom der sich entlang der Leitung ausbreitenden Welle und ist unabhängig vom Ort.  
+
*Der Wellenwiderstand  $Z_{\rm W}$ ist definiert als der Quotient von Spannung und Strom der sich entlang der Leitung ausbreitenden Welle.
 +
*Der Wellenwiderstand  $Z_{\rm W}$ unabhängig vom Ort.  
 
*Deshalb ist $Z_{\rm W}$ auch unabhängig von der Leitungslänge $l$ und wird allein durch die Leitungsbeläge $R\hspace{0.05cm}'$, $L\hspace{0.05cm}'$, $G\hspace{0.05cm}'$ und $C\hspace{0.05cm}'$ bestimmt.
 
*Deshalb ist $Z_{\rm W}$ auch unabhängig von der Leitungslänge $l$ und wird allein durch die Leitungsbeläge $R\hspace{0.05cm}'$, $L\hspace{0.05cm}'$, $G\hspace{0.05cm}'$ und $C\hspace{0.05cm}'$ bestimmt.
 
*Die im Theorieteil angegebene Gleichung
 
*Die im Theorieteil angegebene Gleichung
Line 73: Line 74:
 
macht deutlich, dass der Wellenwiderstand durchaus von der Frequenz abhängt und im allgemeinen auch komplexwertig ist.
 
macht deutlich, dass der Wellenwiderstand durchaus von der Frequenz abhängt und im allgemeinen auch komplexwertig ist.
 
   
 
   
Besonders anzumerken ist, dass der Wellenwiderstand keinen Widerstand im Sinne eines Verbrauchers darstellt:  
+
Anzumerken ist, dass der Wellenwiderstand kein Widerstand im Sinne eines Verbrauchers ist:  
 
*Der Wellenwiderstand charakterisiert die Leitung nicht als verlustbehaftetes Element.  
 
*Der Wellenwiderstand charakterisiert die Leitung nicht als verlustbehaftetes Element.  
*Auch eine verlustlose Leitung besitzt einen Wellenwiderstand und ebenso ist bei der Ausbreitung einer elektromagnetischen Welle stets ein Wellenwiderstand definiert.
+
*Auch eine verlustlose Leitung besitzt einen Wellenwiderstand.
 +
*Ebenso ist bei der Ausbreitung einer elektromagnetischen Welle stets ein Wellenwiderstand definiert.
 +
 
  
  
Line 85: Line 88:
 
  Z_{\rm W}(f) \hspace{0.05cm}.$$
 
  Z_{\rm W}(f) \hspace{0.05cm}.$$
 
Richtig sind die <u>Lösungsvorschläge 1, 2 und 4</u>:
 
Richtig sind die <u>Lösungsvorschläge 1, 2 und 4</u>:
*Da in der Aufgabenstellung $Z_{\rm W}(f) = Z_{\rm W}$ als frequenzunabhängig vorausgesetzt wurde, ist hier auch der Eingangswiderstand  $Z_{\rm E}(f) = Z_{\rm E}$frequenzunabhängig.  
+
*Da in der Aufgabenstellung $Z_{\rm W}(f) = Z_{\rm W}$ als frequenzunabhängig vorausgesetzt wurde, ist auch der Eingangswiderstand  $Z_{\rm E}(f) = Z_{\rm E}$ frequenzunabhängig.  
*Dagegen können bei frequenzabhängigem Wellenwiderstand mit  reellem Abschluss Reflexionen nicht für alle Frequenzen vermieden werden.  
+
*Dagegen können bei frequenzabhängigem Wellenwiderstand mit  reellem Abschluss nicht für alle Frequenzen Reflexionen  vermieden werden.  
*Die Beschaltung $R_1 = R_2 =Z_{\rm W}$  &nbsp; &#8658; &nbsp; $R_1  =Z_{\rm E}$ ist stets anzustreben, da dann von der Quelle die maximale Leistung abgegeben wird.  
+
*Die Beschaltung $R_1 = R_2 =Z_{\rm W}$  &nbsp; &#8658; &nbsp; $R_1  =Z_{\rm E}$ ist anzustreben, da dann von der Quelle die maximale Leistung abgegeben wird.  
 +
 
  
  
Line 106: Line 110:
 
Das heißt:  
 
Das heißt:  
 
*Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
 
*Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
*Bei der niedrigeren Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes dafür eine größere Kabellänge erforderlich.
+
*Bei niedrigerer Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes eine größere Kabellänge erforderlich.
 
*Diese Aussagen beziehen sich natürlich nur auf das Vermeiden von Reflexionen.  
 
*Diese Aussagen beziehen sich natürlich nur auf das Vermeiden von Reflexionen.  
 
*Insgesamt ist natürlich die niedrigere Signalfrequenz günstiger als die höhere.
 
*Insgesamt ist natürlich die niedrigere Signalfrequenz günstiger als die höhere.
 +
  
  
Line 114: Line 119:
 
:$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = \frac{1}{{\rm tanh}(x)}
 
:$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = \frac{1}{{\rm tanh}(x)}
 
  =  \frac {{\rm e}^{2x}+1}{{\rm e}^{2x}-1}\hspace{0.05cm}.$$
 
  =  \frac {{\rm e}^{2x}+1}{{\rm e}^{2x}-1}\hspace{0.05cm}.$$
Im Gegensatz zum Kurzschluss&ndash;Fall ergibt sich für den Quotienten $Z_{\rm E}/Z_{\rm W}$ nun stets ein Wert größer 1:
+
Im Gegensatz zum Kurzschluss&ndash;Fall ergibt sich nun für den Quotienten $Z_{\rm E}/Z_{\rm W} > 1$:
 
:$${Z_{\rm E}(f)}/{Z_{\rm W}} = 1.01 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$${Z_{\rm E}(f)}/{Z_{\rm W}} = 1.01 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  {\rm e}^{2x} = 201\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  {\rm e}^{2x} = 201\hspace{0.3cm}\Rightarrow \hspace{0.3cm}
Line 120: Line 125:
 
Näherungsweise erhält man hier das gleiche Ergebnis wie bei Teilaufgabe (3):  
 
Näherungsweise erhält man hier das gleiche Ergebnis wie bei Teilaufgabe (3):  
 
*Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
 
*Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
*Bei der niedrigeren Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes dafür eine größere Kabellänge erforderlich.
+
*Bei der niedrigeren Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes eine größere Kabellänge erforderlich.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Revision as of 16:25, 28 November 2018

Nachrichtenleitung mit Beschaltung

Ein Übertragungssystem belege den Bereich von  $f_{\rm U} = 10 \ \rm MHz$  bis  $f_{\rm O} = 400 \ \rm MHz$.

Die verwendete Übertragungsleitung besitze zudem einen konstanten Wellenwiderstand   $Z_{\rm W} = 100 \ \rm \Omega$ (reell), was nicht ganz der Realität entspricht, da der Wellenwiderstand meist mit der Frequenz leicht abnimmt und oft auch noch ein (meist kleinerer) Imaginärteil zu berücksichtigen ist.

Die Leitung wird mit einer Spannungsquelle mit dem Innenwiderstand  $R_{\rm 1} = 100 \ \rm \Omega$  gespeist und ist mit dem Widerstand  $R_{\rm 2}$  abgeschlossen. Der Eingangswiderstand der Leitung ergibt sich zu

$$Z_{\rm E}(f) = Z_{\rm W}\cdot \frac {R_2 + Z_{\rm W} \cdot {\rm tanh}(\gamma(f) \cdot l)} {Z_{\rm W}+ R_2 \cdot {\rm tanh}(\gamma(f) \cdot l)} \hspace{0.05cm},\hspace{0.3cm}{\rm tanh}(x) = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}\hspace{0.05cm}, \hspace{0.3cm}x \in {\cal C} \hspace{0.05cm}.$$

Das Übertragungsmaß soll – wieder sehr vereinfacht – durch eine reelle Funktion angenähert werden:

$$\frac {\gamma(f)}{1\,{\rm Np/km}} = \frac {\alpha(f)}{1\,{\rm Np/km}} = \sqrt{f/f_{\rm O}} \hspace{0.05cm}, \hspace{0.3cm}f_{\rm O} = 40\,{\rm MHz}\hspace{0.05cm}.$$




Hinweise:


Fragebogen

1

Welche Aussagen gelten für den Wellenwiderstand  $Z_{\rm W}$  einer Leitung allgemein?

$Z_{\rm W}$  ist abhängig von der Leitungslänge.
$Z_{\rm W}$  kann frequenzabhängig sein.
$Z_{\rm W}$  kann bei bestimmten Frequenzen komplexe Werte annehmen.

2

Welche Aussagen gelten für die Beschaltung mit  $R_1 = R_2 = Z_{\rm W}$?

Der Eingangswiderstand  $Z_{\rm E}(f)$  ist gleich dem Wellenwiderstand.
Der Eingangswiderstand  $Z_{\rm E}(f)$  ist frequenzunabhängig.
Der Eingangswiderstand  $Z_{\rm E}(f)$  hängt von der Leitungslänge ab.
$R_1 = R_2 =Z_{\rm W}$ kennzeichnet die bestmögliche Beschaltung.

3

Bei welcher Leitungslänge  $l = l_\text{min}$  unterscheiden sich  $Z_{\rm E}$  und  $Z_{\rm W}$  im Kurzschlussfall  $(R_{\rm 2} = 0)$  um weniger als $1\%$?

$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$

4

Bei welcher Leitungslänge  $l = l_\text{min}$  unterscheiden sich  $Z_{\rm E}$  von  $Z_{\rm W}$ im Leerlauf  $(R_2 → ∞)$ um weniger als  $1\%$?

$f_{\rm U} = 10\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$
$f_{\rm O} = 40\ {\rm MHz}\hspace{-0.1cm}:\hspace{0.2cm} l_\text{min}\ = \ $

$\ \rm km$


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Der Wellenwiderstand $Z_{\rm W}$ ist definiert als der Quotient von Spannung und Strom der sich entlang der Leitung ausbreitenden Welle.
  • Der Wellenwiderstand $Z_{\rm W}$ unabhängig vom Ort.
  • Deshalb ist $Z_{\rm W}$ auch unabhängig von der Leitungslänge $l$ und wird allein durch die Leitungsbeläge $R\hspace{0.05cm}'$, $L\hspace{0.05cm}'$, $G\hspace{0.05cm}'$ und $C\hspace{0.05cm}'$ bestimmt.
  • Die im Theorieteil angegebene Gleichung
$$Z_{\rm W}(f) = \sqrt{\frac {R\hspace{0.05cm}' + {\rm j} \cdot \omega L\hspace{0.05cm}'}{G\hspace{0.05cm}' + {\rm j} \cdot \omega C\hspace{0.05cm}'}} \hspace{0.1cm}\bigg |_{\hspace{0.05cm} \omega \hspace{0.05cm}= \hspace{0.05cm}2\pi f}$$

macht deutlich, dass der Wellenwiderstand durchaus von der Frequenz abhängt und im allgemeinen auch komplexwertig ist.

Anzumerken ist, dass der Wellenwiderstand kein Widerstand im Sinne eines Verbrauchers ist:

  • Der Wellenwiderstand charakterisiert die Leitung nicht als verlustbehaftetes Element.
  • Auch eine verlustlose Leitung besitzt einen Wellenwiderstand.
  • Ebenso ist bei der Ausbreitung einer elektromagnetischen Welle stets ein Wellenwiderstand definiert.


(2)  Mit dem Abschlusswiderstand $Z_{\rm 2}(f) = Z_{\rm W}(f)$ ist auch der an den Leitungsanfang transformierte Widerstandswert gleich dem Wellenwiderstand, und zwar unabhängig von der Leitungslänge:

$$Z_{\rm E}(f) = Z_{\rm W}(f)\cdot \frac {Z_{\rm 2}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)} {Z_{\rm W}(f)+ Z_{\rm 2}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}= Z_{\rm W}(f)\cdot \frac {Z_{\rm W}(f) + Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)} {Z_{\rm W}(f)+ Z_{\rm W}(f) \cdot {\rm tanh}(\gamma(f) \cdot l)}= Z_{\rm W}(f) \hspace{0.05cm}.$$

Richtig sind die Lösungsvorschläge 1, 2 und 4:

  • Da in der Aufgabenstellung $Z_{\rm W}(f) = Z_{\rm W}$ als frequenzunabhängig vorausgesetzt wurde, ist auch der Eingangswiderstand $Z_{\rm E}(f) = Z_{\rm E}$ frequenzunabhängig.
  • Dagegen können bei frequenzabhängigem Wellenwiderstand mit reellem Abschluss nicht für alle Frequenzen Reflexionen vermieden werden.
  • Die Beschaltung $R_1 = R_2 =Z_{\rm W}$   ⇒   $R_1 =Z_{\rm E}$ ist anzustreben, da dann von der Quelle die maximale Leistung abgegeben wird.


(3)  Mit dem Abschlusswiderstand $R_{\rm 2} = 0$   ⇒   Kurzschluss folgt aus der angegebenen Gleichung mit reellem $x = \gamma (f) \cdot l$:

$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = {\rm tanh}(x) = \frac {{\rm e}^{x}-{\rm e}^{-x}}{{\rm e}^{x}+{\rm e}^{-x}}= \frac {{\rm e}^{2x}-1}{{\rm e}^{2x}+1}.$$

Insbesondere gilt:

$${Z_{\rm E}(f)}/{Z_{\rm W}} = 0.99 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm e}^{2x} = 199\hspace{0.3cm}\Rightarrow \hspace{0.3cm} x ={1}/{2}\cdot {\rm ln}\hspace{0.1cm}(199) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$
$$f_{\rm U} = 10\,\text {MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 0.5\,{\rm Np/km}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{0.5\,{\rm Np/km}}\hspace{0.15cm}\underline{= 5.3\,{\rm km}} \hspace{0.05cm},$$
$$ f_{\rm O} = 40\,\text {MHz:}\hspace{0.2cm}\alpha(f_{\rm U})= 1.0\,{\rm Np/km}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}l_{\rm min}= \frac{2.65\,{\rm Np}}{1.0\,{\rm Np/km}}\hspace{0.15cm}\underline{= 2.65\,{\rm km}} \hspace{0.05cm}.$$

Das heißt:

  • Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
  • Bei niedrigerer Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes eine größere Kabellänge erforderlich.
  • Diese Aussagen beziehen sich natürlich nur auf das Vermeiden von Reflexionen.
  • Insgesamt ist natürlich die niedrigere Signalfrequenz günstiger als die höhere.


(4)  In gleicher Weise erhält man für $R_2 → ∞$   ⇒   Leerlauf die Gleichung

$$\frac{Z_{\rm E}(f)}{Z_{\rm W}} = \frac{1}{{\rm tanh}(x)} = \frac {{\rm e}^{2x}+1}{{\rm e}^{2x}-1}\hspace{0.05cm}.$$

Im Gegensatz zum Kurzschluss–Fall ergibt sich nun für den Quotienten $Z_{\rm E}/Z_{\rm W} > 1$:

$${Z_{\rm E}(f)}/{Z_{\rm W}} = 1.01 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\rm e}^{2x} = 201\hspace{0.3cm}\Rightarrow \hspace{0.3cm} x ={1}/{2}\cdot{\rm ln}\hspace{0.1cm}(201) \approx 2.65\,{\rm Np}\hspace{0.05cm}.$$

Näherungsweise erhält man hier das gleiche Ergebnis wie bei Teilaufgabe (3):

  • Bei der Frequenz $f_{\rm O} = 40\ {\rm MHz}$ genügt bereits die Leitungslänge $l= 2.65 \ \rm km$, um Reflexionen weitgehend zu unterdrücken.
  • Bei der niedrigeren Frequenz $f_{\rm U} = 10\ {\rm MHz}$ ist wegen des geringeren Dämpfungsmaßes eine größere Kabellänge erforderlich.