Difference between revisions of "Aufgaben:Exercise 5.2: Band Spreading and Narrowband Interferer"

From LNTwww
Line 51: Line 51:
 
+ $B_b$  ist exakt gleich  $B$.
 
+ $B_b$  ist exakt gleich  $B$.
  
{Welchen Einfluss hat eine Bandspreizung auf einen schmalbandigen Störer bei der Trägerfrequenz? <br>Es gelte also &nbsp;$B_c$$f_{\rm I} = f_{\rm T}$.
+
{Welchen Einfluss hat eine Bandspreizung auf einen schmalbandigen Störer bei der Trägerfrequenz? <br>Es gelte also &nbsp;$f_{\rm I} = f_{\rm T}$.
 
|type="[]"}
 
|type="[]"}
 
+ Der störende Einfluss wird durch Bandspreizung abgeschwächt.
 
+ Der störende Einfluss wird durch Bandspreizung abgeschwächt.
Line 60: Line 60:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Leistungsdichtesprektrum ${\it \Phi}_c(f)$ ist die Fouriertransformierte der dreieckförmigen AKF, die mit Rechteckfunktionen der Breite $T_c$ wie folgt dargestellt werden kann:
+
'''(1)'''&nbsp; Das Leistungsdichtesprektrum ${\it \Phi}_c(f)$ ist die Fouriertransformierte der dreieckförmigen AKF, die mit Rechtecken der Breite $T_c$ wie folgt dargestellt werden kann:
:$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \left(\frac{\tau}{T_c} \right ) \star {\rm rect} \left(\frac{\tau}{T_c} \right ) \hspace{0.05cm}.$$
+
:$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \big(\frac{\tau}{T_c} \big ) \star {\rm rect} \big(\frac{\tau}{T_c} \big ) \hspace{0.05cm}.$$
Daraus folgt &nbsp; ${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \left[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \right ] \cdot \left[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \right ] = T_c \cdot {\rm si}^2 \left(\pi f T_c \right ) \hspace{0.05cm}$ mit dem Maximalwert
+
*Daraus folgt &nbsp;${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] = T_c \cdot {\rm si}^2 \left(\pi f T_c \right ) \hspace{0.05cm}$ mit dem Maximalwert
 
:$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$
 
:$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$
  
'''(2)'''&nbsp; Gemäß der vorgegebenen Definition gilt mit $T_c = T/100 = 0.1\ \rm  μs$:
+
 
 +
'''(2)'''&nbsp; Gemäß der vorgegebenen Definition gilt mit $T_c = T/100 = 0.1\ \rm  &micro; s$:
 
:$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm si}^2 \left(\pi f T_c \right )\hspace{0.1cm} {\rm d}f = \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$
 
:$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm si}^2 \left(\pi f T_c \right )\hspace{0.1cm} {\rm d}f = \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$
Die Grafik verdeutlicht, dass $B_c$ durch die erste Nullstelle der $si^2$–Funktion im äquivalenten Tiefpassbereich vorgegeben wird, aber auch gleichzeitig die äquivalente (flächengleiche) Bandbreite im Bandpassbereich angibt.
+
Die Grafik verdeutlicht, dass $B_c$ durch die erste Nullstelle der $\rm si^2$–Funktion im äquivalenten Tiefpassbereich vorgegeben wird, aber auch gleichzeitig die äquivalente (flächengleiche) Bandbreite im Bandpassbereich angibt.
 
[[File:P_ID1869__Mod_A_5_2b.png|center|frame|Leistungsdichtespektrum des PN–Spreizsignals]]
 
[[File:P_ID1869__Mod_A_5_2b.png|center|frame|Leistungsdichtespektrum des PN–Spreizsignals]]
  
'''(3)'''&nbsp; Richtig sind also die <u>Lösungsvorschläge 2 und 5</u>:
+
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 5</u>:
*Das LDS ${\it \Phi}_s(f)$ ergibt sich aus der Faltung von $Φ_q(f)$ und $Φ_c(f)$. Damit ergibt sich für die Bandbreite des Sendesignals tatsächlich $B_s = B_c + B$.  
+
*Das LDS ${\it \Phi}_s(f)$ ergibt sich aus der Faltung von ${\it \Phi}_q(f)$ und ${\it \Phi}_c(f)$. Damit erhält man für die Bandbreite des Sendesignals tatsächlich $B_s = B_c + B$.  
 
*Da das Spreizsignal $c(t) ∈ \{+1, –1\}$ mit sich selbst multipliziert immer den Wert $1$ ergibt, ist natürlich $b(t) ≡ q(t)$ und demzufolge $B_b = B$.  
 
*Da das Spreizsignal $c(t) ∈ \{+1, –1\}$ mit sich selbst multipliziert immer den Wert $1$ ergibt, ist natürlich $b(t) ≡ q(t)$ und demzufolge $B_b = B$.  
 
*Offensichtlich ist, dass die Bandbreite $B_b$ des bandgestauchten Signals ungleich $2B_c + B$ ist, obwohl die Faltung ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$ dies suggeriert.  
 
*Offensichtlich ist, dass die Bandbreite $B_b$ des bandgestauchten Signals ungleich $2B_c + B$ ist, obwohl die Faltung ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$ dies suggeriert.  
*Dies hängt damit zusammen, dass nicht die Leistungsdichtespektren gefaltet werden dürfen, sondern von den Spektralfunktionen (Amplitudenspektren) $S(f)$ und $C(f)$ unter Berücksichtigung der Phasenbeziehungen auszugehen ist. Erst danach kann aus $B(f)$ das LDS ${\it \Phi}_b(f)$ bestimmt werden. Es gilt offensichtlich auch: $C(f) ∗ C(f) = δ(f)$.  
+
*Dies hängt damit zusammen, dass nicht die Leistungsdichtespektren gefaltet werden dürfen, sondern von den Spektralfunktionen (Amplitudenspektren) $S(f)$ und $C(f)$ unter Berücksichtigung der Phasenbeziehungen auszugehen ist.  
 +
*Erst danach kann aus $B(f)$ das LDS ${\it \Phi}_b(f)$ bestimmt werden. Es gilt offensichtlich auch: $C(f) ∗ C(f) = δ(f)$.  
  
  
'''(4)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>:
+
'''(4)'''&nbsp; Richtig ist nur der <u>erste Lösungsvorschlag</u>. Die Lösung soll anhand einer Skizze verdeutlicht werden:
*Die Lösung soll anhand einer Skizze verdeutlicht werden. Im oberen Diagramm ist das LDS ${\it \Phi}_i(f)$ des Schmalbandstörers durch zwei Diracfunktionen bei $±f_{\rm T}$ mit Gewichten $P_{\rm I}/2$ angenähert. Eingezeichnet ist auch die Bandbreite $B = 0.1 \ \rm MHz$ (nicht ganz maßstäblich).
 
 
[[File:P_ID1870__Mod_A_5_2c.png|center|frame|Leistungsdichtespektren vor und nach der Bandspreizung]]
 
[[File:P_ID1870__Mod_A_5_2c.png|center|frame|Leistungsdichtespektren vor und nach der Bandspreizung]]
 +
*Im oberen Diagramm ist das LDS ${\it \Phi}_i(f)$ des Schmalbandstörers durch zwei Diracfunktionen bei $±f_{\rm T}$ mit Gewichten $P_{\rm I}/2$ angenähert. Eingezeichnet ist auch die Bandbreite $B = 0.1 \ \rm MHz$ (nicht ganz maßstäblich).
 +
 
*Die empfängerseitige Multiplikation mit $c(t)$ – eigentlich mit der Funktion der Bandstauchung, zumindest bezüglich des Nutzanteils von $r(t)$ – bewirkt hinsichtlich des Störsignals $i(t)$ eine Bandspreizung. Ohne Berücksichtigung des Nutzsignals ist $b(t) = n(t) = i(t) · c(t)$. Daraus folgt:
 
*Die empfängerseitige Multiplikation mit $c(t)$ – eigentlich mit der Funktion der Bandstauchung, zumindest bezüglich des Nutzanteils von $r(t)$ – bewirkt hinsichtlich des Störsignals $i(t)$ eine Bandspreizung. Ohne Berücksichtigung des Nutzsignals ist $b(t) = n(t) = i(t) · c(t)$. Daraus folgt:
 
:$${\it \Phi}_{n}(f)  =  {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) =  \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
 
:$${\it \Phi}_{n}(f)  =  {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) =  \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
 
*Anzumerken ist, dass $n(t)$ hier nur als Abkürzung verwendet wird und nicht AWGN–Rauschen bezeichnet. In einem engen Bereich um die Trägerfrequenz $f_{\rm T} = 30 \ \rm MHz$ ist das LDS ${\it \Phi}_n(f)$ nahezu konstant. Damit gilt für die Störleistung nach der Bandspreizung:
 
*Anzumerken ist, dass $n(t)$ hier nur als Abkürzung verwendet wird und nicht AWGN–Rauschen bezeichnet. In einem engen Bereich um die Trägerfrequenz $f_{\rm T} = 30 \ \rm MHz$ ist das LDS ${\it \Phi}_n(f)$ nahezu konstant. Damit gilt für die Störleistung nach der Bandspreizung:
 
:$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
 
:$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
*Das bedeutet: Die Störleistung wird durch Bandspreizung um den Faktor $J = T/T_c$ herabgesetzt, weshalb $J$ häufig auch als Spreizgewinn bezeichnet wird. Ein solcher Spreizgewinn ist allerdings nur bei einem Schmalbandstörer gegeben.
+
*Das bedeutet: &nbsp; Die Störleistung wird durch Bandspreizung um den Faktor $J = T/T_c$ herabgesetzt, weshalb $J$ häufig auch als Spreizgewinn bezeichnet wird.  
 +
*Ein solcher Spreizgewinn ist allerdings nur bei einem Schmalbandstörer gegeben.
  
  

Revision as of 11:21, 15 January 2019

Betrachtetes Modell
der Bandspreizung

Betrachtet wird ein Spread Spectrum System  gemäß der vorliegenden Grafik im äquivalenten Tiefpassbereich:

  • Das Digitalsignal  $q(t)$  besitze das Leistungsdichtespektrum  ${\it \Phi}_q(f)$, das als rechteckförmig mit der Bandbreite  $B = 1/T = 100\ \rm kHz$  angenähert werden soll:
$${\it \Phi}_{q}(f) = \left\{ \begin{array}{c} {\it \Phi}_{q0} \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{sonst}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} |f| <B/2 \hspace{0.05cm}, \\ \\ \end{array}$$
  • Im Tiefpassbereich ist somit die Bandbreite (nur die Anteile bei positiven Frequenzen) gleich  $B/2$  und die Bandbreite im Bandpassbereich ist  $B$.
  • Die Bandspreizung erfolgt durch Multiplikation mit der PN–Sequenz  $c(t)$  der Chipdauer  $T_c = T/100$ 
    („PN” steht dabei für „Pseudo Noise”).
  • Für die Autokorrelationsfunktion gelte vereinfachend:
$$ {\it \varphi}_{c}(\tau) = \left\{ \begin{array}{c}1 - |\tau|/T_c \\ 0 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{sonst}} \hspace{0.05cm}. \\ \end{array}\begin{array}{*{20}c} -T_c \le \tau \le T_c \hspace{0.05cm}, \\ \\ \end{array}$$
  • Beim Empfänger wird wieder die gleiche Spreizfolge  $c(t)$  phasensynchron zugesetzt.
  • Das Interferenzsignal  $i(t)$  soll zunächst vernachlässigt werden.
  • In der Teilaufgabe (4) bezeichnet  $i(t)$  einen schmalbandigen Störer bei der Trägerfrequenz  $f_{\rm T} = 30 \ \rm MHz = f_{\rm I}$  mit der Leistung  $P_{\rm I}$.
  • Der Einfluss des (stets vorhandenen) AWGN–Rauschens  $n(t)$  wird in dieser Aufgabe nicht betrachtet.



Hinweis:


Fragebogen

1

Wie lautet das Leistungsdichtespektrum  ${\it \Phi}_c(f )$  des Spreizsignals  $c(t)$?
Welcher Wert ergibt sich bei der Frequenz  $f = 0$?

${\it \Phi}_c(f = 0) \ = \ $

$\ \cdot 10^{-6} \ \rm 1/Hz$

2

Berechnen Sie die äquivalente Bandbreite  $B_c$  des Spreizsignals als Breite des flächengleichen LDS–Rechtecks.

$B_c \ = \ $

$\ \rm MHz$

3

Welche Aussagen sind für die Bandbreiten der Signale  $s(t)$   ⇒   $B_s$ und  $b(t)$   ⇒   $B_b$ zutreffend?
Die (zweiseitige) Bandbreite von  $q(t)$  ist  $B$.

$B_s$  ist exakt gleich  $B_c$.
$B_s$  ist näherungsweise gleich  $B_c + B$.
$B_b$  ist exakt gleich  $B_s$.
$B_b$  ist gleich  $B_s + B_c = 2B_c + B$.
$B_b$  ist exakt gleich  $B$.

4

Welchen Einfluss hat eine Bandspreizung auf einen schmalbandigen Störer bei der Trägerfrequenz?
Es gelte also  $f_{\rm I} = f_{\rm T}$.

Der störende Einfluss wird durch Bandspreizung abgeschwächt.
Die Störleistung ist nur mehr halb so groß.
Die Störleistung wird durch die Bandspreizung nicht verändert.


Musterlösung

(1)  Das Leistungsdichtesprektrum ${\it \Phi}_c(f)$ ist die Fouriertransformierte der dreieckförmigen AKF, die mit Rechtecken der Breite $T_c$ wie folgt dargestellt werden kann:

$${\it \varphi}_{c}(\tau) = \frac{1}{T_c} \cdot {\rm rect} \big(\frac{\tau}{T_c} \big ) \star {\rm rect} \big(\frac{\tau}{T_c} \big ) \hspace{0.05cm}.$$
  • Daraus folgt  ${\it \Phi}_{c}(f) = {1}/{T_c} \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] \cdot \big[ T_c \cdot {\rm si} \left(\pi f T_c \right ) \big ] = T_c \cdot {\rm si}^2 \left(\pi f T_c \right ) \hspace{0.05cm}$ mit dem Maximalwert
$${\it \Phi}_{c}(f = 0) = T_c = \frac{T}{100}= \frac{1}{100 \cdot B} = \frac{1}{100 \cdot 10^5\,{\rm 1/s}} = 10^{-7}\,{\rm 1/Hz} \hspace{0.15cm}\underline {= 0.1 \cdot 10^{-6}\,{\rm 1/Hz}}\hspace{0.05cm}.$$


(2)  Gemäß der vorgegebenen Definition gilt mit $T_c = T/100 = 0.1\ \rm µ s$:

$$B_c= \frac{1}{T_c} \cdot \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\it \Phi}_{c}(f)\hspace{0.1cm} {\rm d}f = \hspace{-0.03cm} \int_{-\infty }^{+\infty} \hspace{-0.03cm} {\rm si}^2 \left(\pi f T_c \right )\hspace{0.1cm} {\rm d}f = \frac{1}{T_c}\hspace{0.15cm}\underline {= 10\,{\rm MHz}} \hspace{0.05cm}$$

Die Grafik verdeutlicht, dass $B_c$ durch die erste Nullstelle der $\rm si^2$–Funktion im äquivalenten Tiefpassbereich vorgegeben wird, aber auch gleichzeitig die äquivalente (flächengleiche) Bandbreite im Bandpassbereich angibt.

Leistungsdichtespektrum des PN–Spreizsignals

(3)  Richtig sind die Lösungsvorschläge 2 und 5:

  • Das LDS ${\it \Phi}_s(f)$ ergibt sich aus der Faltung von ${\it \Phi}_q(f)$ und ${\it \Phi}_c(f)$. Damit erhält man für die Bandbreite des Sendesignals tatsächlich $B_s = B_c + B$.
  • Da das Spreizsignal $c(t) ∈ \{+1, –1\}$ mit sich selbst multipliziert immer den Wert $1$ ergibt, ist natürlich $b(t) ≡ q(t)$ und demzufolge $B_b = B$.
  • Offensichtlich ist, dass die Bandbreite $B_b$ des bandgestauchten Signals ungleich $2B_c + B$ ist, obwohl die Faltung ${\it \Phi}_s(f) ∗ {\it \Phi}_c(f)$ dies suggeriert.
  • Dies hängt damit zusammen, dass nicht die Leistungsdichtespektren gefaltet werden dürfen, sondern von den Spektralfunktionen (Amplitudenspektren) $S(f)$ und $C(f)$ unter Berücksichtigung der Phasenbeziehungen auszugehen ist.
  • Erst danach kann aus $B(f)$ das LDS ${\it \Phi}_b(f)$ bestimmt werden. Es gilt offensichtlich auch: $C(f) ∗ C(f) = δ(f)$.


(4)  Richtig ist nur der erste Lösungsvorschlag. Die Lösung soll anhand einer Skizze verdeutlicht werden:

Leistungsdichtespektren vor und nach der Bandspreizung
  • Im oberen Diagramm ist das LDS ${\it \Phi}_i(f)$ des Schmalbandstörers durch zwei Diracfunktionen bei $±f_{\rm T}$ mit Gewichten $P_{\rm I}/2$ angenähert. Eingezeichnet ist auch die Bandbreite $B = 0.1 \ \rm MHz$ (nicht ganz maßstäblich).
  • Die empfängerseitige Multiplikation mit $c(t)$ – eigentlich mit der Funktion der Bandstauchung, zumindest bezüglich des Nutzanteils von $r(t)$ – bewirkt hinsichtlich des Störsignals $i(t)$ eine Bandspreizung. Ohne Berücksichtigung des Nutzsignals ist $b(t) = n(t) = i(t) · c(t)$. Daraus folgt:
$${\it \Phi}_{n}(f) = {\it \Phi}_{i}(f) \star {\it \Phi}_{c}(f) = \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f - f_{\rm T}) \cdot T_c \right )+ \frac{P_{\rm I}\cdot T_c}{2}\cdot {\rm si}^2 \left( \pi \cdot (f + f_{\rm T}) \cdot T_c \right ) \hspace{0.05cm}.$$
  • Anzumerken ist, dass $n(t)$ hier nur als Abkürzung verwendet wird und nicht AWGN–Rauschen bezeichnet. In einem engen Bereich um die Trägerfrequenz $f_{\rm T} = 30 \ \rm MHz$ ist das LDS ${\it \Phi}_n(f)$ nahezu konstant. Damit gilt für die Störleistung nach der Bandspreizung:
$$ P_{n} = P_{\rm I} \cdot T_c \cdot B = P_{\rm I}\cdot \frac{B}{B_c} = \frac{P_{\rm I}}{J}\hspace{0.05cm}. $$
  • Das bedeutet:   Die Störleistung wird durch Bandspreizung um den Faktor $J = T/T_c$ herabgesetzt, weshalb $J$ häufig auch als Spreizgewinn bezeichnet wird.
  • Ein solcher Spreizgewinn ist allerdings nur bei einem Schmalbandstörer gegeben.