Difference between revisions of "Aufgaben:Exercise 5.4: Walsh Functions (PCCF, PACF)"

From LNTwww
m (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Line 3: Line 3:
 
}}
 
}}
  
[[File:P_ID1889__Mod_A_5_4.png|right|frame|Hadamard–Matrix <b>H</b><sub>8</sub>]]
+
[[File:P_ID1889__Mod_A_5_4.png|right|frame|Hadamard–Matrix &nbsp;${\mathbf{H}_{8}}$]]
Häufig verwendet man zur Bandspreizung und Bandstauchung so genannte ''Walsh–Funktionen'', die mittels der Hadamard–Matrix konstruiert werden können. Ausgehend von der Matrix
+
Häufig verwendet man zur Bandspreizung und Bandstauchung so genannte &nbsp;''Walsh–Funktionen'', die mittels der Hadamard–Matrix konstruiert werden können. Ausgehend von der Matrix
 
:$${\mathbf{H}_{2}} = \left[ \begin{array}{ccc} +1 & +1 \\ +1 & -1 \end{array} \right] $$
 
:$${\mathbf{H}_{2}} = \left[ \begin{array}{ccc} +1 & +1 \\ +1 & -1 \end{array} \right] $$
lassen sich durch folgende Rekursiont die weiteren Hadamard–Matrizen $ {\mathbf{H}_{4}}$, $ {\mathbf{H}_{8}}$, usw. herleiten:
+
lassen sich durch folgende Rekursion die weiteren Hadamard–Matrizen &nbsp;$ {\mathbf{H}_{4}}$, &nbsp;$ {\mathbf{H}_{8}}$, usw. herleiten:
 
:$$ {\mathbf{H}_{2J}} = \left[ \begin{array}{ccc} \mathbf{H}_J & \mathbf{H}_J \\ \mathbf{H}_J & -\mathbf{H}_J \end{array} \right] \hspace{0.05cm}.$$
 
:$$ {\mathbf{H}_{2J}} = \left[ \begin{array}{ccc} \mathbf{H}_J & \mathbf{H}_J \\ \mathbf{H}_J & -\mathbf{H}_J \end{array} \right] \hspace{0.05cm}.$$
Die Grafik zeigt die Matrix $ {\mathbf{H}_{8}}$ für den Spreizfaktor $J = 8$. Daraus lassen sich die Spreizfolgen
+
Die Grafik zeigt die Matrix &nbsp;$ {\mathbf{H}_{8}}$&nbsp; für den Spreizfaktor &nbsp;$J = 8$. Daraus lassen sich die Spreizfolgen
 
:$$ \langle w_\nu^{(1)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
 
:$$ \langle w_\nu^{(1)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
 
:$$ \langle w_\nu^{(2)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
 
:$$ \langle w_\nu^{(2)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
 
:$$...$$
 
:$$...$$
 
:$$\langle w_\nu^{(7)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
 
:$$\langle w_\nu^{(7)}\rangle  =  {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$
für sieben CDMA–Teilnehmer ablesen. Die Spreizfolge $ \langle w_\nu^{(0)}\rangle$ entsprechend der ersten Zeile in der Hadamard–Matrix wird meistens nicht vergeben, da sie nicht spreizt.
+
für sieben CDMA–Teilnehmer ablesen. Die Spreizfolge &nbsp;$ \langle w_\nu^{(0)}\rangle$&nbsp; entsprechend der ersten Zeile in der Hadamard–Matrix wird meistens nicht vergeben, da sie nicht spreizt.
  
Die Fragen beziehen sich meist auf den Spreizfaktor $J = 4$. Damit können entsprechend mit den Spreizfolgen $ \langle w_\nu^{(1)}\rangle$, $ \langle w_\nu^{(2)}\rangle$ und $ \langle w_\nu^{(3)}\rangle$ maximal drei CDMA–Teilnehmer versorgt werden, die sich aus der zweiten, dritten und vierten Zeile der Matrix $ {\mathbf{H}_{4}}$ ergeben.
+
Die Fragen beziehen sich meist auf den Spreizfaktor &nbsp;$J = 4$. Damit können entsprechend mit den Spreizfolgen &nbsp;$ \langle w_\nu^{(1)}\rangle$, &nbsp;$ \langle w_\nu^{(2)}\rangle$&nbsp; und &nbsp;$ \langle w_\nu^{(3)}\rangle$&nbsp; maximal drei CDMA–Teilnehmer versorgt werden, die sich aus der zweiten, dritten und vierten Zeile der Matrix $ {\mathbf{H}_{4}}$ ergeben.
  
 
Hinsichtlich der Korrelationsfunktionen soll in dieser Aufgabe folgende Nomenklatur gelten:
 
Hinsichtlich der Korrelationsfunktionen soll in dieser Aufgabe folgende Nomenklatur gelten:
* Die [[Modulationsverfahren/Spreizfolgen_für_CDMA#Periodische_AKF_und_KKF|periodische Kreuzkorrelationsfunktion]] (PKKF) zwischen den Folgen $ \langle w_\nu^{(i)}\rangle$und $ \langle w_\nu^{(j)}\rangle$ wird mit $φ_{ij}(λ)$ bezeichnet. Hierbei gilt:
+
* Die &nbsp;[[Modulationsverfahren/Spreizfolgen_für_CDMA#Periodische_AKF_und_KKF|periodische Kreuzkorrelationsfunktion]]&nbsp; (PKKF) zwischen den Folgen &nbsp;$ \langle w_\nu^{(i)}\rangle$&nbsp; und &nbsp;$ \langle w_\nu^{(j)}\rangle$&nbsp; wird mit &nbsp;$φ_{ij}(λ)$&nbsp; bezeichnet. Hierbei gilt:
 
:$${\it \varphi}_{ij}(\lambda) = {\rm E}\left [ w_{\nu}^{(i)} \cdot w_{\nu+ \lambda}^{(j)} \right ] \hspace{0.05cm}.$$
 
:$${\it \varphi}_{ij}(\lambda) = {\rm E}\left [ w_{\nu}^{(i)} \cdot w_{\nu+ \lambda}^{(j)} \right ] \hspace{0.05cm}.$$
* Ist die PKKF $φ_{ij} \equiv 0$ (das heißt: $φ_{ij}(λ) = 0$ für alle Werte von $λ$), so stören sich die CDMA–Teilnehmer nicht, auch wenn zwei Teilnehmer unterschiedliche Laufzeiten aufweisen.
+
* Ist die PKKF &nbsp;$φ_{ij} \equiv 0$&nbsp; (das heißt: &nbsp;$φ_{ij}(λ) = 0$&nbsp; für alle Werte von &nbsp;$λ$), so stören sich die CDMA–Teilnehmer nicht, auch wenn zwei Teilnehmer unterschiedliche Laufzeiten aufweisen.
* Gilt zumindest $φ_{ij}({\it λ} = 0) = 0$, so kommt es zumindest bei synchronem CDMA–Betrieb (keine oder gleiche Laufzeiten aller Teilnehmer) zu keinen Interferenzen.
+
* Gilt zumindest &nbsp;$φ_{ij}({\it λ} = 0) = 0$, so kommt es zumindest bei synchronem CDMA–Betrieb (keine oder gleiche Laufzeiten aller Teilnehmer) zu keinen Interferenzen.
* Die  [[Modulationsverfahren/Spreizfolgen_für_CDMA#Periodische_AKF_und_KKF|periodische  Autokorrelationsfunktion]] (PAKF) der Walsh–Funktion $ \langle w_\nu^{(i)}\rangle$ wird mit $φ_{ii}(λ)$ bezeichnet, und es gilt:
+
* Die  &nbsp;[[Modulationsverfahren/Spreizfolgen_für_CDMA#Periodische_AKF_und_KKF|periodische  Autokorrelationsfunktion]]&nbsp; (PAKF) der Walsh–Funktion &nbsp;$ \langle w_\nu^{(i)}\rangle$&nbsp; wird mit &nbsp;$φ_{ii}(λ)$&nbsp; bezeichnet, und es gilt:
 
:$${\it \varphi}_{ii}(\lambda) = {\rm E}\left [ w_{\nu}^{(i)} \cdot w_{\nu+ \lambda}^{(i)} \right ] \hspace{0.05cm}.$$
 
:$${\it \varphi}_{ii}(\lambda) = {\rm E}\left [ w_{\nu}^{(i)} \cdot w_{\nu+ \lambda}^{(i)} \right ] \hspace{0.05cm}.$$
 +
 +
 +
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Spreizfolgen_für_CDMA|Spreizfolgen für CDMA]].
*Bezug genommen wird insbesondere auf den Abschnitt [[Modulationsverfahren/Spreizfolgen_für_CDMA#Walsh.E2.80.93Funktionen |Walsh&ndash;Funktionen]] im Theorieteil.  
+
*Bezug genommen wird insbesondere auf den Abschnitt&nbsp; [[Modulationsverfahren/Spreizfolgen_für_CDMA#Walsh.E2.80.93Funktionen |Walsh&ndash;Funktionen]]&nbsp; im Theorieteil.  
* Wir möchten Sie gerne auch auf das Interaktionsmodul [[Walsh-Funktionen]] hinweisen.
+
* Wir möchten Sie gerne auch auf das Interaktionsmodul [[Applets:Walsh|Walsh-Funktionen]] hinweisen.
 
   
 
   
*Die Abszisse ist auf die Chipdauer $T_c$ normiert. Das bedeutet, dass $λ = 1$ eigentlich eine Verschiebung um die Verzögerungszeit $τ = T_c$ beschreibt.
+
*Die Abszisse ist auf die Chipdauer &nbsp;$T_c$&nbsp; normiert. Das bedeutet, dass &nbsp;$λ = 1$&nbsp; eigentlich eine Verschiebung um die Verzögerungszeit &nbsp;$τ = T_c$&nbsp; beschreibt.
  
  
Line 38: Line 41:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lauten die Spreizfolgen für $J = 4$?
+
{Wie lauten die Spreizfolgen für &nbsp;$J = 4$?
 
|type="[]"}
 
|type="[]"}
 
+ $ \langle w_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 -\hspace{-0.15cm}1 +\hspace{-0.15cm}1 -\hspace{-0.15cm}1$,
 
+ $ \langle w_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 -\hspace{-0.15cm}1 +\hspace{-0.15cm}1 -\hspace{-0.15cm}1$,
Line 44: Line 47:
 
+ $ \langle w_\nu^{(3)}\rangle = +\hspace{-0.05cm}1 -\hspace{-0.15cm}1 -\hspace{-0.15cm}1 +\hspace{-0.15cm}1$.
 
+ $ \langle w_\nu^{(3)}\rangle = +\hspace{-0.05cm}1 -\hspace{-0.15cm}1 -\hspace{-0.15cm}1 +\hspace{-0.15cm}1$.
  
{Welche Aussagen gelten bezüglich der PKKF–Werte $φ_{ij}(λ = 0)$?
+
{Welche Aussagen gelten bezüglich der PKKF–Werte &nbsp;$φ_{ij}(λ = 0)$?
 
|type="[]"}
 
|type="[]"}
+ Für $J = 4$ ist $φ_{12}(λ = 0) = 0$.
+
+ Für $J = 4$&nbsp; ist &nbsp;$φ_{12}(λ = 0) = 0$.
+ Für $J = 4$ ist $φ_{13}(λ = 0) = 0$.
+
+ Für $J = 4$&nbsp; ist &nbsp;$φ_{13}(λ = 0) = 0$.
+ Für $J = 4$ ist $φ_{23}(λ = 0) = 0$.
+
+ Für $J = 4$&nbsp; ist &nbsp;$φ_{23}(λ = 0) = 0$.
- Für $J = 8$ kann durchaus $φ_{ij}(λ = 0) ≠ 0$ gelten $(i ≠ j)$.
+
- Für $J = 8$&nbsp; kann durchaus &nbsp;$φ_{ij}(λ = 0) ≠ 0$&nbsp; gelten &nbsp;$(i ≠ j)$.
 
+ Bei synchronem CDMA stören sich die Teilnehmer nicht.
 
+ Bei synchronem CDMA stören sich die Teilnehmer nicht.
  
{Welche Aussagen gelten für die PKKF–Werte mit $λ ≠ 0$?
+
{Welche Aussagen gelten für die PKKF–Werte mit &nbsp;$λ ≠ 0$?
 
|type="[]"}
 
|type="[]"}
+ Für alle Werte von $λ$ ist die PKKF $φ_{12}(λ) = 0$.
+
+ Für alle Werte von &nbsp;$λ$&nbsp; ist die PKKF &nbsp;$φ_{12}(λ) = 0$.
+ Für alle Werte von $λ$ ist die PKKF $φ_{13}(λ) = 0$.
+
+ Für alle Werte von &nbsp;$λ$&nbsp; ist die PKKF &nbsp;$φ_{13}(λ) = 0$.
- Für alle Werte von $λ$ ist die PKKF $φ_{23}(λ) = 0$.
+
- Für alle Werte von &nbsp;$λ$&nbsp; ist die PKKF &nbsp;$φ_{23}(λ) = 0$.
 
- Bei asynchronem CDMA stören sich die Teilnehmer nicht.
 
- Bei asynchronem CDMA stören sich die Teilnehmer nicht.
  
 
{Welche Aussagen gelten für die PAKF–Kurven?
 
{Welche Aussagen gelten für die PAKF–Kurven?
 
|type="[]"}
 
|type="[]"}
+ Alle $φ_{ii}(λ)$–Kurven sind periodisch.
+
+ Alle &nbsp;$φ_{ii}(λ)$–Kurven sind periodisch.
+ Es gilt $φ_{11}(λ = 0) = +\hspace{-0.05cm}1$ und $φ_{11}(λ = 1) = -\hspace{-0.05cm}1$.
+
+ Es gilt &nbsp;$φ_{11}(λ = 0) = +\hspace{-0.05cm}1$&nbsp; und &nbsp;$φ_{11}(λ = 1) = -\hspace{-0.05cm}1$.
- Es gilt $φ_{22}(λ) = φ_{11}(λ)$.
+
- Es gilt &nbsp;$φ_{22}(λ) = φ_{11}(λ)$.
+ Es gilt $φ_{33}(λ) = φ_{22}(λ)$.
+
+ Es gilt &nbsp;$φ_{33}(λ) = φ_{22}(λ)$.
 
</quiz>
 
</quiz>
  

Revision as of 17:47, 16 January 2019

Hadamard–Matrix  ${\mathbf{H}_{8}}$

Häufig verwendet man zur Bandspreizung und Bandstauchung so genannte  Walsh–Funktionen, die mittels der Hadamard–Matrix konstruiert werden können. Ausgehend von der Matrix

$${\mathbf{H}_{2}} = \left[ \begin{array}{ccc} +1 & +1 \\ +1 & -1 \end{array} \right] $$

lassen sich durch folgende Rekursion die weiteren Hadamard–Matrizen  $ {\mathbf{H}_{4}}$,  $ {\mathbf{H}_{8}}$, usw. herleiten:

$$ {\mathbf{H}_{2J}} = \left[ \begin{array}{ccc} \mathbf{H}_J & \mathbf{H}_J \\ \mathbf{H}_J & -\mathbf{H}_J \end{array} \right] \hspace{0.05cm}.$$

Die Grafik zeigt die Matrix  $ {\mathbf{H}_{8}}$  für den Spreizfaktor  $J = 8$. Daraus lassen sich die Spreizfolgen

$$ \langle w_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$ \langle w_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$...$$
$$\langle w_\nu^{(7)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm}{+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm}{-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm}.$$

für sieben CDMA–Teilnehmer ablesen. Die Spreizfolge  $ \langle w_\nu^{(0)}\rangle$  entsprechend der ersten Zeile in der Hadamard–Matrix wird meistens nicht vergeben, da sie nicht spreizt.

Die Fragen beziehen sich meist auf den Spreizfaktor  $J = 4$. Damit können entsprechend mit den Spreizfolgen  $ \langle w_\nu^{(1)}\rangle$,  $ \langle w_\nu^{(2)}\rangle$  und  $ \langle w_\nu^{(3)}\rangle$  maximal drei CDMA–Teilnehmer versorgt werden, die sich aus der zweiten, dritten und vierten Zeile der Matrix $ {\mathbf{H}_{4}}$ ergeben.

Hinsichtlich der Korrelationsfunktionen soll in dieser Aufgabe folgende Nomenklatur gelten:

  • Die  periodische Kreuzkorrelationsfunktion  (PKKF) zwischen den Folgen  $ \langle w_\nu^{(i)}\rangle$  und  $ \langle w_\nu^{(j)}\rangle$  wird mit  $φ_{ij}(λ)$  bezeichnet. Hierbei gilt:
$${\it \varphi}_{ij}(\lambda) = {\rm E}\left [ w_{\nu}^{(i)} \cdot w_{\nu+ \lambda}^{(j)} \right ] \hspace{0.05cm}.$$
  • Ist die PKKF  $φ_{ij} \equiv 0$  (das heißt:  $φ_{ij}(λ) = 0$  für alle Werte von  $λ$), so stören sich die CDMA–Teilnehmer nicht, auch wenn zwei Teilnehmer unterschiedliche Laufzeiten aufweisen.
  • Gilt zumindest  $φ_{ij}({\it λ} = 0) = 0$, so kommt es zumindest bei synchronem CDMA–Betrieb (keine oder gleiche Laufzeiten aller Teilnehmer) zu keinen Interferenzen.
  • Die  periodische Autokorrelationsfunktion  (PAKF) der Walsh–Funktion  $ \langle w_\nu^{(i)}\rangle$  wird mit  $φ_{ii}(λ)$  bezeichnet, und es gilt:
$${\it \varphi}_{ii}(\lambda) = {\rm E}\left [ w_{\nu}^{(i)} \cdot w_{\nu+ \lambda}^{(i)} \right ] \hspace{0.05cm}.$$



Hinweise:

  • Die Abszisse ist auf die Chipdauer  $T_c$  normiert. Das bedeutet, dass  $λ = 1$  eigentlich eine Verschiebung um die Verzögerungszeit  $τ = T_c$  beschreibt.


Fragebogen

1

Wie lauten die Spreizfolgen für  $J = 4$?

$ \langle w_\nu^{(1)}\rangle = +\hspace{-0.05cm}1 -\hspace{-0.15cm}1 +\hspace{-0.15cm}1 -\hspace{-0.15cm}1$,
$ \langle w_\nu^{(2)}\rangle = +\hspace{-0.05cm}1 +\hspace{-0.15cm}1 -\hspace{-0.15cm}1 -\hspace{-0.15cm}1$,
$ \langle w_\nu^{(3)}\rangle = +\hspace{-0.05cm}1 -\hspace{-0.15cm}1 -\hspace{-0.15cm}1 +\hspace{-0.15cm}1$.

2

Welche Aussagen gelten bezüglich der PKKF–Werte  $φ_{ij}(λ = 0)$?

Für $J = 4$  ist  $φ_{12}(λ = 0) = 0$.
Für $J = 4$  ist  $φ_{13}(λ = 0) = 0$.
Für $J = 4$  ist  $φ_{23}(λ = 0) = 0$.
Für $J = 8$  kann durchaus  $φ_{ij}(λ = 0) ≠ 0$  gelten  $(i ≠ j)$.
Bei synchronem CDMA stören sich die Teilnehmer nicht.

3

Welche Aussagen gelten für die PKKF–Werte mit  $λ ≠ 0$?

Für alle Werte von  $λ$  ist die PKKF  $φ_{12}(λ) = 0$.
Für alle Werte von  $λ$  ist die PKKF  $φ_{13}(λ) = 0$.
Für alle Werte von  $λ$  ist die PKKF  $φ_{23}(λ) = 0$.
Bei asynchronem CDMA stören sich die Teilnehmer nicht.

4

Welche Aussagen gelten für die PAKF–Kurven?

Alle  $φ_{ii}(λ)$–Kurven sind periodisch.
Es gilt  $φ_{11}(λ = 0) = +\hspace{-0.05cm}1$  und  $φ_{11}(λ = 1) = -\hspace{-0.05cm}1$.
Es gilt  $φ_{22}(λ) = φ_{11}(λ)$.
Es gilt  $φ_{33}(λ) = φ_{22}(λ)$.


Musterlösung

(1)  Alle Vorschläge sind richtig:

  • Die Matrix $ {\mathbf{H}_{4}}$ ist die linke obere Teilmatrix von $ {\mathbf{H}_{8}}$.
  • Die Spreizfolgen ergeben sich aus den Zeilen 2, 3 und 4 von $ {\mathbf{H}_{4}}$, und stimmen mit den angegebenen Folgen überein.


(2)  Richtig sind die Lösungsvorschläge 1, 2 und 3:

  • Entsprechend den Gleichungen im Angabenteil gilt:
$${\it \varphi}_{12}(\lambda = 0) = 1/4 \cdot \left [ (+1) \cdot (+1) + (-1) \cdot (+1) + (+1) \cdot (-1) + (-1) \cdot (-1) \right ] = 0\hspace{0.05cm},$$
$${\it \varphi}_{13}(\lambda = 0) = 1/4\cdot \left [ (+1) \cdot (+1) + (-1) \cdot (-1) + (+1) \cdot (-1) + (-1) \cdot (+1) \right ] = 0\hspace{0.05cm},$$
$${\it \varphi}_{23}(\lambda = 0) =1/4 \cdot \left [ (+1) \cdot (+1) + (+1) \cdot (-1) + (-1) \cdot (-1) + (-1) \cdot (+1) \right ] = 0\hspace{0.05cm}.$$
  • Auch für größere Werte von $J$ ist für $i ≠ j$ der PKKF–Wert stets $φ_{ij}(λ = 0)= 0$.
  • Daraus folgt: Bei synchronem CDMA stören sich die Teilnehmer nicht.


(3)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Für alle Werte von $λ$ ist dieie PKKF $φ_{12}(λ) = 0$, wie die folgenden Zeilen zeigen:
$$\langle w_\nu^{(1)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$ $$\langle w_\nu^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}, \hspace{0.3cm}{\rm Produkt\hspace{0.1cm} mit \hspace{0.1cm}}\langle w_\nu^{(1)}\rangle: {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle w_{\nu+1}^{(2)}\rangle = {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm}, \hspace{0.3cm}{\rm Produkt\hspace{0.1cm} mit \hspace{0.1cm}}\langle w_\nu^{(1)}\rangle: {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle w_{\nu+2}^{(2)}\rangle = {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm}{\rm Produkt\hspace{0.1cm} mit \hspace{0.1cm}}\langle w_\nu^{(1)}\rangle: {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle w_{\nu+3}^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.05cm},\hspace{0.3cm}{\rm Produkt\hspace{0.1cm} mit \hspace{0.1cm}}\langle w_\nu^{(1)}\rangle: {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} \hspace{0.05cm},$$
$$\langle w_{\nu+4}^{(2)}\rangle = {+\hspace{-0.05cm}1}\hspace{0.15cm} {+\hspace{-0.05cm}1} \hspace{0.15cm} {-\hspace{-0.05cm}1}\hspace{0.15cm} {-\hspace{-0.05cm}1} = \langle w_\nu^{(2)}\rangle \hspace{0.05cm}.$$
  • Das gleiche gilt für die PKKF $φ_{13}(λ)$.
  • Dagegen erhält man für die PKKF zwischen den Folgen $ \langle w_\nu^{(2)}\rangle$ und $ \langle w_\nu^{(3)}\rangle$:
Verschiedene PKKF– und PAKF–Kurven
$${\it \varphi}_{23}(\lambda ) = \left\{ \begin{array}{c}0 \\+1\\ -1 \\ \end{array} \right. \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c} \lambda = 0, \pm 2, \pm 4,\pm 6, ... \hspace{0.05cm}, \\ \hspace{0.14cm} \lambda = ... \hspace{0.05cm} , -3, +1, +5, ... \hspace{0.05cm}, \\ \hspace{0.14cm} \lambda = ... \hspace{0.05cm} , -5, -1, +3, ... \hspace{0.05cm}. \\ \end{array}$$
  • Das bedeutet: Wird das Signal von Teilnehmer 3 gegenüber Teilnehmer 2 um ein Spreizchip verzögert oder umgekehrt, so lassen sich die Teilnehmer nicht mehr trennen und es kommt zu einer signifikanten Erhöhung der Fehlerwahrscheinlichkeit.
  • In der Grafik sind die PKKF–Kurven gestrichelt eingezeichnet (violett und rot).


(4)  Richtig sind die Aussagen 1, 2 und 4:

  • Da die Walsh–Funktion Nr. 1 periodisch ist mit $T_0 = 2T_c$, ist auch die PAKF periodisch mit $λ = 2$.
  • Die zweite Aussage ist richtig, wie die folgende Rechnung zeigt (grüner Kurvenzug):
$${\it \varphi}_{11}(\lambda = 0) = 1/4 \cdot \left [ (+1) \cdot (+1) + (-1) \cdot (-1) + (+1) \cdot (+1) + (-1) \cdot (-1) \right ] = +1\hspace{0.05cm},$$
$${\it \varphi}_{11}(\lambda = 1) = 1/4 \cdot \left [ (+1) \cdot (-1) + (+1) \cdot (-1) + (+1) \cdot (-1) + (+1) \cdot (-1) \right ] = -1\hspace{0.05cm}.$$
  • Da sich die beiden Walsh–Funktionen Nr. 2 und 3 nur durch eine Verschiebung um $T_c$ unterscheiden und sich eine Phase in der PAKF prinzipiell nicht auswirkt, ist tatsächlich entsprechend dem letzten Lösungsvorschlag $φ_{33}(λ) = φ_{22}(λ)$. Diese beiden PAKF–Funktionen sind blau eingezeichnet.
  • Dagegen unterscheidet sich $φ_{22}(λ)$ von $φ_{11}(λ)$ durch eine andere Periodizität: $φ_{22}(λ) = φ_{33}(λ)$ ist doppelt so breit wie $φ_{11}(λ)$.